摘要 — 从“互联网人工智能”时代到“具身人工智能”时代,出现了一种新兴的范式转变,人工智能算法和代理不再从主要来自互联网的图像、视频或文本数据集中学习。相反,他们通过与环境的互动从类似于人类的自我中心感知中进行学习。因此,对具身人工智能模拟器的需求大幅增长,以支持各种具身人工智能研究任务。对具身人工智能日益增长的兴趣有利于对通用人工智能 (AGI) 的更大追求,但目前还没有对这一领域的当代和全面的调查。本文旨在为具身人工智能领域提供百科全书式的调查,从其模拟器到其研究。通过评估我们提出的七个特征的九个当前具象人工智能模拟器,本文旨在了解模拟器在具象人工智能研究中的用途及其局限性。最后,本文调查了具象人工智能的三个主要研究任务——视觉探索、视觉导航和具象问答 (QA),涵盖了最先进的方法、评估指标和数据集。最后,通过调查该领域发现的新见解,本文将为任务模拟器的选择提供建议,并为该领域的未来方向提供建议。
摘要 人工智能的概念在历史上一直占有重要地位,在当代也一直是人们经常讨论和探索的主题。人工智能 (AI) 是众多文学作品和电影中反复出现的主题,其在未来背景下具有重大意义。对人工智能的主题探索一直是数十年来创造性努力的主题。近年来,深度伪造技术已成为人工智能领域的一个突出主题。深度伪造技术被广泛认为是一项基于人工智能和深度学习的创新。近年来,众多深度伪造应用对公众产生了巨大影响。除了制作针对高知名度人物的操纵电影外,很明显,深度伪造技术在多个领域都具有许多潜在应用。本研究的目的是探索深度伪造技术在许多领域的潜在应用。本研究通过集中学习概念并参考人工智能技术来研究深度伪造技术。该研究通过进行全面的文献分析并分析其在不同领域的使用实例,对深度伪造技术的众多应用进行了分类。根据研究结果,可以将深度伪造技术的重要应用分为四个不同的类别。前面提到的类别包括艺术和娱乐、广告和营销、电影业、政治传播和媒体。关键词:人工智能、深度学习、深度伪造、超现实。
自动化设计综合有可能彻底改变现代工程设计流程,并提高无数行业对高度优化和定制产品的访问。成功地将生成式机器学习应用于设计工程可以实现这种自动化设计综合,是一个非常重要的研究课题。我们回顾并分析了工程设计中的深度生成机器学习模型。深度生成模型 (DGM) 通常利用深度网络从输入数据集中学习并合成新设计。最近,前馈神经网络 (NN)、生成对抗网络 (GAN)、变分自动编码器 (VAE) 和某些深度强化学习 (DRL) 框架等 DGM 在结构优化、材料设计和形状合成等设计应用中显示出良好的效果。自 2016 年以来,DGM 在工程设计中的普及率飙升。为了预测其持续增长,我们对最近的进展进行了回顾,以造福对设计 DGM 感兴趣的研究人员。我们将回顾的结构化为对当前文献中常用的算法、数据集、表示方法和应用的阐述。特别是,我们讨论了在 DGM 中引入新技术和方法、成功将 DGM 应用于设计相关领域或通过数据集或辅助方法直接支持 DGM 开发的关键工作。我们进一步
地面飞机轨迹预测是空中交通管制和管理的主要关注点。安全有效的预测是实施新自动化工具的先决条件。在当前的操作中,轨迹预测是使用物理模型计算的。它模拟作用在飞机上的力,以预测未来轨迹的连续点。使用这样的模型需要了解飞机状态(质量)和飞机意图(推力定律、速度意图)。大部分这些信息对于地面系统来说是不可用的。本文重点关注爬升阶段。我们通过预测一些未知的点质量模型参数来提高轨迹预测精度。这些未知参数是质量和速度意图。本研究依赖来自 OpenSky 网络的 ADS-B 数据。它包含该传感器网络检测到的 2017 年的爬升段。研究了 11 种最常见的飞机类型。获得的数据集包含来自世界各地的数百万个爬升段。爬升段未根据其高度进行过滤。使用机器学习方法从该数据集中学习返回缺失参数的预测模型。训练后的模型在一年的最后两个月进行测试,并与基线方法(使用 BADA 和前十个月计算的平均参数)进行比较。与此基线相比,机器学习方法降低了海拔高度的 RMSE
人脑是神经生物系统的中央枢纽,以复杂的方式控制行为和认知。神经科学和神经影像分析的最新进展表明,人们对大脑感兴趣区域(ROI)之间的相互作用及其对神经发育和疾病诊断的影响越来越感兴趣。作为分析图结构数据的强大深度模型,图神经网络(GNN)已被应用于脑网络分析。然而,训练深度模型需要大量标记数据,由于数据获取的复杂性和共享限制,这些数据在脑网络数据集中往往很少。为了充分利用可用的训练数据,我们提出了 PTGB,这是一个 GNN 预训练框架,它可以捕捉内在的脑网络结构,而不管临床结果如何,并且很容易适应各种下游任务。 PTGB 包含两个关键组件:(1)专为大脑网络设计的无监督预训练技术,能够从没有特定任务标签的大规模数据集中学习;(2)数据驱动的分区图谱映射管道,可促进具有不同 ROI 系统的数据集之间的知识转移。使用各种 GNN 模型进行的广泛评估表明,与基线方法相比,PTGB 具有稳健且卓越的性能。
情感分析已发展为理解和预测金融市场动态的有效工具。情感是一组集体的投资者信念,众所周知会影响资产定价和影响市场。因此,在古典金融模型中整合适当的情感量度已成为近年来的关键任务(Zhou,2018年)。一个主要问题是如何准确衡量情绪。传统上,财务分析主要依赖定量信息和经济指标来做出明智的投资决策,但由于大数据来源的发展和自然语言处理(NLP)的改善,情绪分析在金融行业变得越来越流行。我们的研究提出,生成的AI模型可能是一种改变游戏的发展,对情感分析产生深远的影响。潜在的生成AI模型使用深度学习来开发具有局限性的人类创造力和判断的材料(Guo等人,2023; Wiegreffe,Hessel,Swayamdipta,Riedl和Choi,2021)。金融中的生成AI模型可能是生产综合财务文件,市场场景和投资策略。这些模型有助于综合新的见解和观点,这些见解和观点通过从大型数据集中学习模式来补充定量研究。生成AI与情感分析的组合为调查微妙的新选择
摘要 - 已提出了无线贝叶斯神经网络(WBNNS),以解决能源效率和设计复杂性的问题,以在资源约束边缘设备中进行培训和分类。通过引入热激活的DNA致动器和磁性旋转旋转振荡器(STOS),WBNN能够从小型数据集中学习并解决过度拟合的问题,以实现准确的分类结果。为了有效地生成高斯变量,这项工作提出了电磁耦合的stos,可以固有地创建可编程频谱分布,以用于贝叶斯神经网络(BNNS)的变异推断。具体而言,通过使用最大量的高斯变量,与BNN进行单层将DNA折纸与STO进行单层整合的纳米级异质结构,以执行乘法和积累(MAC),包括:1)具有加权偏置电流的STOS,以将概率分布和生成振动范围设置为频率范围,通过频率进行频率范围,通过频率进行频率范围,以使oscilly oscill osscill频率通过频率进行频率范围。 (2)可以选择性地整合来自各种STO的无线信号以将接收到的能量转换为可编程磁场的DNA折纸。仿真结果表明,所提出的WBNN可以在消耗625 µW时获得高于96%的精度。
空中交通管制是在高度动态和随机环境中的实时安全关键决策过程。在当今的航空实践中,人类空中交通管制员监控并指挥多架飞机飞过其指定空域。随着传统(商用客机)和低空(无人机和 eVTOL 飞机)空域的空中交通复杂性快速增长,需要一个自主空中交通控制系统来适应高密度空中交通并确保飞机之间的安全分离。我们提出了一个深度多智能体强化学习框架,该框架能够识别和解决具有多个交叉点和合并点的高密度、随机和动态航路区中的飞机之间的冲突。所提出的框架采用了演员-评论家模型 A2C,该模型结合了近端策略优化 (PPO) 的损失函数来帮助稳定学习过程。此外,我们使用集中学习、分散执行方案,其中一个神经网络由环境中的所有代理学习和共享。我们表明,我们的框架既可扩展又高效,可容纳大量进场飞机,实现极高的交通吞吐量和安全保障。我们通过在 BlueSky 环境中进行大量模拟来评估我们的模型。结果表明,在极端高密度空中交通场景中,我们的框架能够分别解决交叉点和合并点的 99.97% 和 100% 的所有冲突。
根据 JDL 数据融合组过程模型,在 0、1、2 和 2+/3 级进行数据和信息融合。为了支持多传感器 IMINT 和 GMTI 融合和 3D 可视化,我们构建了阿拉巴马州莫比尔码头和周边地区的 3D 站点模型,该模型允许使用我们现有的图像挖掘工具进行搜索,并提供 COP 环境,可以在其中模拟和可视化场景。我们开发了用于模拟交通和编写单个车辆移动脚本的软件,以支持场景创建。我们探索了几个新概念来支持 2+/3 级的更高级别的信息融合。一种方法源于对动态脉冲信息网络及其同步形式的神经处理的洞察。这些网络可以以关系和学习到的关联的形式绑定数据和语义知识。我们证明了使用这些网络在移动数据集中学习动态城市场景中移动车辆之间的简单关联的可行性。第二种方法涉及从图像和/或文本数据中提取知识结构。我们开发了两种从数据集中的概念共现中发现分类法的机制。我们证明了这些方法对融合图像和文本语料库的有效性。最后一种方法利用神经启发机制从移动的跟踪实体中学习正常行为模型。这些模型随后被使用
糖尿病是我们社会中的一种常见疾病。每个第三人都会受到这种严重疾病的影响。这是由不规则的生活方式,不良的饮食习惯以及缺乏运动以及怀孕期间引起的。在人体中,血糖水平受胰腺释放的胰岛素激素控制。由于胰岛素激素的任何原因,由于任何原因,血糖水平也会影响。这样,一个人可能会受到糖尿病的影响。可以通过定期运动和采用健康的生活方式来治愈受影响的患者。要控制血糖水平,可以给予某些药物或可以明确给予胰岛素。要知道一个人是否受到糖尿病的影响,需要进行一些诊断。如果我们在早期了解这种疾病,我们可能会防止这种有害疾病。用于早期预测机学习技术已被使用(Kerner&Bruckel,2014)。机器学习技术从数据集中学习以预测结果。Some data is used as a training data which is used to train and then we can perform prediction using test data (Bottou,2014).For early stage diabetes prediction the various researchers have been used Support Vector Machine(Vishwanathan et al.,2002),Naive Bayes (Rish,2001), Artificial Neural Network (Wang,2003), Decision tree (Safavian et al.,1991)(Pal,2005),K nearest Neighbour (Liao&Vemuri,2002),LSTM(长期记忆)(Sherstinsky,2020)。