过去十年在利用机器学习的化学发现中取得的非凡成就突出了可访问知识和结构化数据的力量。1 - 3但是,化学知识的一部分,尤其是实验知识的一部分,以非结构化的形式散布在整个科学文学中。4研究人员在有效地利用现有知识来设计实验方面面临着挑战,以及在ELD中理解以前的整个研究。因此,开发从文献中提取信息并将其转换为结构化数据的方法论将在推进分子和材料的机器学习方面起着基本作用。自然语言处理(NLP)是从科学文学中提取信息的强大工具。召开NLP方法已用于材料和化学
摘要 - 本研究提出了一种使用所提出的优化阈值差异 (OTD) 和粗糙集理论 (RST) 自动分割脑肿瘤的有效方法。使用所提出的两级分割算法确定肿瘤区域。第一级,即创建叠加图像,它是初始阶段分割的脑区所有像素的强度平均值。然后是第二级,其中根据指定的阈值在脑区和叠加图像之间应用阈值差异处理。使用灰度共生矩阵 (GLCM) 从分割图像中提取特征。为了提高性能,对提取的特征采用了 RST。使用 Figshare 开放数据集验证了完全自动化的方法。