原子量子圈(“旋转”)与捕获的离子库仑晶体中的集体运动之间的抽象激光控制的纠缠需要从激光器进行条件动量转移。由于自旋依赖性力是从自旋光相互作用中的空间梯度得出的,因此该力通常是纵向的,与平均激光K -vector(或两个梁的K-矢量差异)平行且成比例,这构成了可访问的自旋 - 运动偶联的方向和相对幅度。在这里,我们显示了如何由于其横向发射中的梯度而垂直于单个激光束传递动量。通过控制离子的位置的横向梯度通过光束塑造,可以调节边带和载体的相对强度,以优化所需的相互作用并抑制不需要的,抗谐振的效果,从而降低了栅极的限制。我们还讨论了这种效果如何在最近的实验中扮演着未引人注目的角色。
重夸克是研究超相对论重离子碰撞中产生的夸克胶子等离子体 (QGP) 特性的有效探针。本文将讨论 ALICE 合作组测量的 pp 和 Pb-Pb 碰撞中开放重味产生的最新结果。测量 Pb-Pb 碰撞中开放重味产生可以测试重夸克在介质中的传输和能量损失机制。此外,测量重味粒子的椭圆 (𝑣 2 ) 和三角形 (𝑣 3 ) 流动系数可以深入了解重夸克参与介质的集体运动、它们在介质中能量损失的路径长度依赖性以及强子化过程中的复合效应。最后,开放重味粒子的定向流 (𝑣 1) 对碰撞早期存在的空前强磁场非常敏感,因此测量其电荷依赖性是限制 QGP 电导率的关键。在像 pp 这样的小型强子系统中,开放重味粒子的产生为研究重离子碰撞中的热介质效应以及测试微扰量子色动力学计算提供了基础。
斯德哥尔摩大学动物学系博士后奖学金职位 大脑形态进化和行为 斯德哥尔摩大学动物学系 Niclas Kolm 教授研究组提供为期两年的全职博士后奖学金职位。该项目旨在研究物种内大脑形态变异和行为变异之间的进化关联。为此,该项目将使用三个已经建立的孔雀鱼 (Poecilia reticulata) 人工选择系,它们具有 i) 不同的相对大脑尺寸、ii) 不同的学习行为和 iii) 不同的相对端脑尺寸。还计划进行一项关于神经元密度的额外选择实验。坚实的基础设施(超过 4000 个水族馆,六个房间专门用于大样本量的个体和群体分析)可用于人工选择实验、认知能力的多种分析、配偶选择、捕食者-猎物相互作用、集体运动、迁徙行为、生理学以及大脑和身体形态学(该项目可通过蔡司 Versa 520 和 SciLifeLab 的光片显微镜使用 X 射线显微镜)。该部门还提供分子工具来分析基因组机制。博士后的个人研究兴趣对于确定确切的项目非常重要。
囚禁离子具有较长的相干时间、固有的均匀性和较高的门保真度,是量子模拟和通用量子计算的一个有前途的平台[1-8]。实现高保真度多量子比特纠缠门的最常用方法依赖于将内部量子比特“自旋”态与集体运动自由度耦合[1,2,9]。几何相位门——通过运动相空间中封闭的、自旋相关的轨迹产生纠缠——被广泛使用,因为它们对离子温度(在 Lamb-Dicke 极限下)具有一级不敏感性[10-12]。几何相位门利用激光束产生所需的自旋运动耦合,已被用于产生保真度为 ∼ 0 的贝尔态。 999 [7,8],主要误差来自非共振光子散射[13]。其他无激光方案利用静态[14-19]、近量子比特频率[20-25]或近运动频率[20,26-28]磁场梯度引起自旋运动耦合。虽然无激光方案消除了光子散射误差,并且不需要稳定的高功率激光器,但由于其门持续时间通常较长,因此更容易受到其他噪声源的影响。由于场幅度波动导致的量子比特频率偏移或错误校准是使用微波场梯度实现的无激光门的主要误差源[19,21]。最近的研究表明,通过精心的陷阱设计可以被动地减少其中一些偏移[24]。也可以通过添加控制场来执行动态解耦,从而主动减少它们[18,29-32];迄今为止,最好的
集体运动本质上是普遍存在的;诸如鱼类,鸟类和无蹄类动物之类的动物群体似乎整体运动,展现出丰富的行为曲目,从定向运动到铣削到无序的蜂拥而至。通常,这种宏观模式是由组成部分之间的分散局部互动引起的(例如,在学校中的个人鱼)。这一过程的杰出模型将个体描述为自构的颗粒,受自我生成的运动和“社会力量”,例如短期排斥和远距离吸引力或一致性。但是,生物不是颗粒。他们是概率的决策者。在这里,我们介绍了一种基于主动推断的集体行为进行建模的方法。这个认知框架是单一势在必行的结果:最大程度地减少惊喜。我们证明,许多经验上观察到的集体现象,包括凝聚力,铣削和定向运动,在考虑主动贝叶斯推论所驱动的行为时自然出现,而没有明确的行为规则或目标在单个主体中构建行为规则。此外,我们表明积极推论可以恢复和推广社会力量的经典概念,因为试图抑制与他们的期望相结合的预测错误。通过探索基于信念的模型的参数空间,我们揭示了各个信念与群体属性(如极化)和访问不同集体状态的趋势之间的非平凡关系。我们还探讨了个人对不确定性的信念如何决定集体决策的准确性。最后,我们展示了代理如何随着时间的推移更新其生成模型,从而导致对外部爆发更敏感的组,并更加牢固地编码信息。
将机械振荡器用激光冷却到其运动基态是量子计量、模拟和计算领域的一个持续研究方向[1-4]。特别是,将单个原子定位到远低于光波长(“Lamb-Dicke”机制)是实现原子系统高保真量子控制的先决条件[1,5]。在大的捕获离子晶体中,量子纠缠门利用离子的集体运动[6,7]。这种运动必须在基态附近制备,冷却过程与耦合到环境的加热相竞争[8,9]。因此,开发新方法来实现所有运动模式的高带宽和快速冷却至关重要,这些运动模式用作量子信息处理的量子总线。解析边带冷却(RSC)是冷却机械振荡器的通用工具,对于捕获离子,它是冷却到基态的标准方法[1,10-12]。然而,RSC 时间通常随着振荡器的总质量或链中捕获离子的数量线性增长。通过实施具有单离子寻址的并行 RSC 策略,可以改善大型链的这种缩放比例 [13] 。捕获离子和原子的电磁诱导透明 (EIT) 冷却是另一种众所周知的基态冷却方法 [14 – 20] 。它利用三能级 Λ 系统中的量子干涉 [21] 来创建针对原子运动量身定制的可调窄光谱特征,以实现高效冷却。应用于捕获离子,EIT 冷却允许在很大一部分运动光谱上同时进行基态冷却,而无需单离子寻址 [22 – 24] 。EIT 冷却在简单的三能级系统之外的扩展已经激发了一些理论 [25 – 27] 和实验 [28 – 30] 研究。这种扩展对于量子
纠缠量子门是量子信息处理的核心元素。经过几十年的实验,这种门已经在几种物理系统中成功实现,包括囚禁离子[1-3]、超导电路[4]、量子点[5]和NV中心[6]。经过一段时间的原理验证实验,该领域现在需要具有极高保真度的快速量子门,以便下一步实现性能超越传统设备的硬件。最先进的平台包括囚禁离子[7,8]。由于离子因库仑排斥而在空间上分离,因此定义量子比特的电子自由度之间没有明显的直接相互作用,需要设计通过集体运动模式介导的有效相互作用才能实现纠缠门。该机制涉及运动状态的改变[9],这对于门的实现绝对必要。但同样重要的是,电子模式和运动模式在门时间变得不相关,否则将导致不相干的门操作。有各种各样用电磁场驱动离子的方案 [ 10 – 13 ],这些方案在低温下在弱离子运动相互作用的 Lamb-Dicke 区域中实现这一点,运动模式也是如此。对于目前在 Lamb-Dicke 区域中采用的大多数纠缠门,相对简单的驱动方案会导致门操作很大程度上独立于初始运动状态。尽管如此,局限于 Lamb-Dicke 区域也带来了一些挑战。保持离子运动接近量子力学基态的必要性对冷却提出了严格的要求;在冷却循环之间只能执行有限数量的门,这减少了在相干时间内可以执行的门数量。由于相互作用较弱,实现快速门需要强激光驱动,从而产生诸如交流斯塔克位移和非共振激发等不利影响,从而降低门保真度 [14]。即使在完全冷却的运动和弱相互作用下,
BioContightion是一种流动动力学现象,该现象是由比其周围的流体略稠密的自属性微生物的集体运动驱动的。这个过程在各种生物学和工业应用中起着至关重要的作用[1-5]。通气微生物,例如藻类和细菌,在对外部刺激作出反应时会产生密度变化,即一种称为出租车的行为,导致对流稳定性。出租车的关键例子包括照照,重力,陀螺赛,趋化性和趋化性。了解生物对流在环境科学,生物技术和工程学中特别相关,它影响了营养运输,生物反应器效率和微生物生态学。早期研究主要集中于等温条件下的悬浮液。然而,许多微生物,居住在温泉中的良性嗜热剂,在温度变化显着的环境中壮成长[6-8]。在各种类型的出租车中影响微生物运动,光疗(对光的响应)和热疗(对温度梯度的反应)在塑造生物感染模式中起着至关重要的作用[9]。虽然已经针对非孔培养基中的光疗法和引力生物传染进行了大量研究,但充满藻类悬浮液饱和的多孔生物反射仍相对较低。存在多孔矩阵的存在引入了添加复杂性,例如流动性和修饰的构造动力学,使其成为自然生态系统和工业流动系统系统的关键研究领域。但是,当G超过G C时,它们伴有摄影影响的生物配分模式的形成和特征取决于各种环境光条件,包括直接和倾斜的类似的辐射[10-16]。高强度的光可以破坏已建立的模式或抑制其发育[12,13,17]。照明水平的变化有助于这些模式的空间结构和大小的变化。这些改变可以归因于特定机制。光合作用的杂种生物表现出对光强度的方向运动。当强度G保持低于鉴定阈值G C时,它们会表现出正光的阳性,向更明亮的区域迁移。
补充参考文献 1. Lincoln, CN, Fitzpatrick, AE 和 van Thor, JJ 光活性黄色蛋白飞秒激发下的光异构化量子产率和非线性截面。Phys. Chem. Chem. Phys. 14 , 15752-15764 (2012)。 2. Kim, JE, Tauber, MJ 和 Mathies, RA 视觉中波长依赖性的顺反异构化。Biochemistry 40 , 13774-13778 (2001)。 3. Shoeman, RL, Hartmann, E. 和 Schlichting, I. 生长和制造纳米和微晶体 Nat Protoc 正在印刷中 (2022)。 4. Groot, ML, vanGrondelle, R., Leegwater, JA 和 vanMourik, F. 绿色植物和细菌红细菌光系统 II 反应中心的自由基对量子产率。亚皮秒脉冲下的饱和行为。J. Phys. Chem. B 101 , 7869-7873 (1997)。5. Claesson, E. 等人。飞秒 X 射线激光捕获的光敏色素蛋白的一级结构光响应。eLife 9 , e53514 (2020)。6. Sugahara, M. 等人。油脂基质作为用于序列晶体学的多功能蛋白质载体。自然方法 12 , 61-3 (2015)。7. Li, H. 等人。使用时间分辨的串行飞秒晶体学捕捉光系统 II 从 S1 到 S2 转变的结构变化。IUCrJ 8,431-443 (2021)。8. Grünbein, ML 等人。通过串行飞秒晶体学进行超快泵浦探测实验的照明指南。自然方法 17,681-684 (2020)。9. Nogly, P. 等人。飞秒 X 射线激光捕获细菌视紫红质中的视网膜异构化。科学 361,eaat0094 (2018)。10. Falahati, K.、Tamura, H.、Burghardt, I. 和 Huix-Rotllant, M. 通过非绝热量子动力学实现肌红蛋白中的超快一氧化碳光解和血红素自旋交叉。 Nat Commun 9 , 4502 (2018)。11. Barends, TR 等人。直接观察配体解离后 CO 肌红蛋白中的超快集体运动。Science 350 , 445-50 (2015)。
谈到爱尔兰为应对气候危机而减少排放所做的贡献,已经取得的进展至关重要,必须得到承认,但也不能误认为是完全成功。临界点通常被描述为一系列小变化变得足够重要,从而引发更大、更重要的变化的点。我们在本报告中看到的进展是朝着正确方向的集体运动。为了在这一进展的基础上取得全面成功,爱尔兰现在需要继续前进,扩大我们在能源转型方面的行动,造福我们的人民、我们的经济,并最终确保一个宜居的地球。本报告中的数据展示了 2023 年的许多可喜成就。例如,我们达到了 30 多年来能源相关排放量的最低水平,并且出现了爱尔兰能源相关排放量在过去十年中有七年下降的模式。我们的电力排放量继续大幅减少,我们高度依赖化石燃料的热力部门的排放量连续第三年减少。数据还显示,我们的能源结构中可再生能源的比例达到了有记录以来的最高水平,风力发电和大型太阳能发电场的发电量创下了历史新高。这些都是很好的信号,但是还没有达到实现我们承诺的目标所需的速度。问题是我们能否利用好所有这些势头,所以这确实是爱尔兰的转折点的开始。我们正处于迈向可持续能源未来的关键时期。虽然我们成功减少了排放,但由于各种原因,我们的能源需求仍在持续增长。鉴于大气排放的累积性,我们要提醒自己,重要的不仅是到 2030 年或 2050 年实现减排的最终目标,还有我们每年相对于基于科学的碳预算和部门上限的排放结果。这些都是我们不可谈判的。本报告中提供的最新权威国家数据和分析,以及 SEAI 今年早些时候发布的最新能源预测,都表明需要加快速度;部署更多可再生能源和能源效率技术和实践,并战略性地减缓所有部门的碳密集型活动,从而减少我们的需求。为了加快步伐,我们必须压缩大规模部署可再生能源的时间表,在我们的电网中发展城市和城镇的区域供热网络,淘汰燃油和燃气锅炉,大规模推广电动汽车,并立即减少需求。所需的变革速度是前所未有的,需要加倍的努力和支持。所有部门和参与者都需要采取“尽一切可能”的态度,我们必须继续在社区中共同努力。为了战略性地放缓,爱尔兰必须在增长、在必要时进行限制,以确保选择符合科学设定的生态边界。任何其他做法都是不负责任的。这一代决策者有责任找到在地球限制内让社会繁荣发展的方法。这听起来像是一项艰巨的任务。但正如我在过去几年中多次写过的,我们有技术解决方案,现在要做的就是赢得人心、激励行动并在监管和增长方面做出艰难的选择。今年报告中的数据进一步强调,在全速替代经济和社会中的化石燃料的同时,把握增长时机至关重要。我们需要通过更有效地利用能源来平衡必要的增长,我们需要在经济增长决策上采取战略性措施,帮助爱尔兰实现能源转型,避免进一步加重其履行气候义务的负担。
