摘要:量子力学引入的量子信息相当于经典信息的某种推广:从有限到无限的序列或集合。信息量是以基本选择为单位测量的选择量。“量子比特”可以解释为“比特”的推广,即在一系列备选方案中进行选择。选择公理对于量子信息是必要的。相干态在测量后随时间转变为有序的结果序列。量子信息量是与所讨论的无穷序列相对应的超限序数。超限序数可以定义为模糊对应的“超限自然数”,将皮亚诺算术的自然数推广到“希尔伯特算术”,从而实现了数学和量子力学基础的统一。
colsumamrise。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。2归一化。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3归一化。Quantiles.in.blocks。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。5归一化。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。6归一化.Quantiles.target。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。7 rcmodelplmd。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。9 rcmodelplmr。。。。。。。。。。。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>10 RC情绪。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>12 div>
摘要 - 开放式学习从使用符号方法来实现目标表示,因为它们提供了为有效且可转移的学习构建知识的方法。但是,依赖符号推理的现有层次增强学习(HRL)方法通常受到手动目标表示,因此通常受到限制。自主发现符号目标表示的挑战是它必须保留关键信息,例如环境动态。在本文中,我们提出了一种通过紧急表示(即组在一起)在任务中具有相似作用的环境状态集的新兴表示的发展机制。我们引入了一种封建HRL算法,该算法同时了解目标表示和层次结构政策。该算法使用神经网络工作的符号可及性分析来近似状态集之间的过渡关系并确定目标表示。我们在复杂的导航任务上评估了我们的方法,表明学习的表示形式可解释,可转移,并导致数据有效学习。
tbl.tfClassExample <- data.frame(motifName=c("MA0006.1", "MA0042.2", "MA0043.2"), chrom=c("chr1", "chr1", "chr1"), start=c(1000005, 1000085, 1000105), start=c(1000013, 1000092, 1000123), score=c(0.85, 0.92, 0.98), stringsAsFactors=FALSE) # 这里我们说明如何添加具有所需名称的列:tbl.tfClassExample$shortMotif <- tbl.tfClassExample$motifName tbl.out <- associateTranscriptionFactors(MotifDb, tbl.tfClassExample, source="TFClass", expand.rows=TRUE) dim(tbl.out) # 许多 tfs 已映射,主要是 FOX 家族基因 tbl.motifDbExample <- data.frame(motifName=c("Mmusculus-jaspar2016-Ahr::Arnt-MA0006.1", "Hsapiens-jaspar2016-FOXI1-MA0042.2", "Hsapiens-jaspar2016-HLF-MA0043.2"), chrom=c("chr1", "chr1", "chr1"), start=c(1000005, 1000085, 1000105), start=c(1000013, 1000092, 1000123), score=c(0.85, 0.92, 0.98),字符串因子=FALSE)
提出了对集合理论基础的批判分析。形式逻辑和理性辩证法的统一是分析的正确方法基础。分析导致以下结果:(1)应根据形式上逻辑性的从句“概念的定义”,“逻辑类别”,“概念的划分”,“分裂的基础”,“分裂规则”来分析集合的数学概念; (2)集合的标准数学理论是一个错误的理论,因为它不包含“集合的元素(对象)”的定义; (3)空集(类)的概念是一个毫无意义,错误且不可接受的,因为“空集(类)”的概念的定义与逻辑类的定义相矛盾。(如果Set(class)不包含单个元素(对象),则没有元素(object)的功能(符号)。这意味着空集(类)的概念没有内容和音量(范围)。因此,这个概念不可接受); (4)集合的标准数学操作(类)(类)的标准数学操作是毫无意义的,错误的和不可接受的操作,因为它们不满足以下形式的正式条件:集合(类)的每个单独元素(object)必须仅在一个集合中(类)(类),并且不能在两个集合中(类)。因此,形式分析的结果证明了集合的标准数学理论是一种错误的理论,因为它不满足真理的标准。
摘要。患者分层通过基于其分子和/或临床特征鉴定出不同的亚组,在个性化医学中起着至关重要的作用。但是,许多基于机器学习的分层技术无法识别与每个患者组相关的本质生物标志物特征。在本文中,我们提出了一种使用分层集合聚类来解释的患者分层的新方法。我们的方法利用具有与主成分分析(PCA)结合的采样,以捕获最重要的模式和贡献生物标志物。我们使用机器学习基准数据集和来自癌症基因组地图集(TCGA)的现实世界数据的方法的有效性,展示了检测到的患者簇的可解释性。
基于流量的生成模型已经证明了广泛的数据模式(例如图像和文本)的有希望的性能。但是,很少有工作探索其扩展到无序数据(例如,空间点集),这并不是很微不足道,因为以前的模型主要是为自然订购的向量数据设计的。在本文中,我们提出了无序的流,这是一种基于流程的基于设定数据生成的生成模型。具体来说,我们将未订购的数据转换为适当的函数代表,并通过功能值流量匹配来了解此类表示的概率度量。对于从函数表示到未排序数据的逆映射,我们提出了一种类似于粒子过滤的方法,Langevin Dynamics首先要热身初始粒子和基于梯度的搜索,以更新它们直至结合。我们已经在多个现实世界数据集上进行了广泛的实验,这表明我们的无序流模型在生成集合结构化数据方面非常有效,并且显着胜过先前的基线。
关键词:七分集,七分中智集,中智正弦距离测度,七分中智集和 MADM 策略。 ________________________________________________________________________________________ 1. 简介 中智集合已经成为处理各个研究领域中的不确定性、不确定性和不一致性的一种有力工具 [5]。近年来,经典集合论已经不足以对复杂的不确定系统进行建模 [5]。Florentin Smarandache 于 1998 年引入了中智集合论或中性知识的概念 [1, 4],为处理不确定性和不一致性提供了一个强大的框架 [6]。最近的研究探索了距离测度的中智扩展,包括正弦距离测度 (SDM) 和七分假设距离测度 (HHDM) [2]。我们主要通过投票即选举来选择领导者。每次选举,选民都会选择支持候选人 A、支持对手 B 或完全弃权。选择不投票的选民可以通过选择 A 到 B 选项来决定选举结果;这被称为“中立或不确定”[3]。
重复使用本文是根据创意共享属性 - 非商业 - 诺迪维斯(CC BY-NC-ND)许可证的条款分发的。此许可只允许您下载此工作并与他人共享,只要您归功于作者,但是您不能以任何方式更改文章或商业使用。此处的更多信息和许可证的完整条款:https://creativecommons.org/licenses/
曾经被认为是中性的同义突变,现在被认为对多种疾病,尤其是癌症具有重要意义。必须在人类癌症中识别这些驱动程序的同义突变是必不可少的,但是当前方法受数据限制的约束。在这项研究中,我们最初研究了基于序列特征的影响,包括DNA形状,物理化学特性和核苷酸的一式编码以及基于BERT的预训练的化学分子语言模型的深度学习衍生特征。随后,我们提出了EPEL,这是使用集合学习的同义突变的效应预测指标。EPEL结合了五个基于树的模型,并优化了效率选择,以提高预测精度。值得注意的是,从化学分子中掺入DNA形状的效果和深度学习的特征代表了评估同义突变对癌症的影响的开创性效果。与现有的最新方法相比,EPEL在独立的测试数据集上展示了出色的性能。此外,我们的分析揭示了各种癌症类型的效果评分与患者结局之间的显着相关性。有趣的是,虽然深度学习方法在其他领域显示出希望,但其DNA序列表示并不能显着增强本研究中驾驶员同义突变的识别。总体而言,我们预计EPEL将促进研究人员更精确地靶向驱动器同义词突变。EPEL的用户友好网络服务器可在http://ahmu.epel.bio/上获得。EPEL的设计具有灵活性,使用户可以重新训练预测模型,并为人类癌症中的同义突变产生效果分数。