摘要 - 开放式学习从使用符号方法来实现目标表示,因为它们提供了为有效且可转移的学习构建知识的方法。但是,依赖符号推理的现有层次增强学习(HRL)方法通常受到手动目标表示,因此通常受到限制。自主发现符号目标表示的挑战是它必须保留关键信息,例如环境动态。在本文中,我们提出了一种通过紧急表示(即组在一起)在任务中具有相似作用的环境状态集的新兴表示的发展机制。我们引入了一种封建HRL算法,该算法同时了解目标表示和层次结构政策。该算法使用神经网络工作的符号可及性分析来近似状态集之间的过渡关系并确定目标表示。我们在复杂的导航任务上评估了我们的方法,表明学习的表示形式可解释,可转移,并导致数据有效学习。
蛋白质是动态分子,在生物过程中和其他方面的热力学采样构象中的状态之间的过渡。尽管由X射线晶体学生成的模型通常描绘了单个构象,但这实际上是一个集合度量。蛋白质晶体是一个巨大的分子阵列,从衍射中重建的电子密度可捕获该阵列中原子位置之间的变异性。随着蛋白质链中的灵活性的增加,电子密度越来越散布。由于难以识别和建模特定构象产生平均密度,因此通常仅以B因子的形式间接报告最佳拟合模型周围的变异性。然而,如果可检测到的晶体学者在多个替代位置(通常称为Altlocs)中的原子模型。交替位置的蛋白质主链段仍然不足以识别,因为大多数可视化平台(例如Pymol和Chimerax)以及使用结构模型作为输入(例如Gromacs)的程序完全忽略了Altloc或用简单的启发式方法来解决它们[4]。最近的工作[11]创建了从PDB结构中提取的Altloc的全面目录,这表明该数据集应在努力中使用单个序列预测多个结构的努力。有趣的是,作者表明,对于一组良好的分离和稳定的Altlocs,即使结构合奏预测因子识别该区域是灵活的,他们也无法捕获实验确定的构象甚至骨架构象分布的双峰性。
I. 引言 我们考虑一个涉及两方 Alice 和 Bob 的通信场景。给定一个量子态集合 ρ,其标签位于集合 M 中,双方均已知该集合。在每一轮中,Alice 以概率 Tr[ ρ ( m )] 选取一个标签 m ∈M,并将状态 Tr[ ρ ( m )] − 1 ρ ( m ) 交给 Bob。Bob 的目标是正确猜出标签 m,并允许他一次查询 M 中的一个元素,直到他的查询正确,此时该轮结束。Bob 承担的成本函数是猜测的平均次数,直到他正确猜出 m 。Bob 最通用的策略是执行量子测量 π,从 M 的编号集合 NM 中输出一个元素 n,然后按照 n 指定的顺序查询 M 中的元素。因此,猜测由标签 m 在编号 n 中的出现次数给出,对所有编号取平均值。使用量子电路的形式化[1],设置如下:
有机分子与纳米级腔的真空场的强耦合可用于修饰其化学和物理性质。我们扩展了分子集合的Tavis – Cummings模型,并表明,静态偶极矩和偶极子自我能量产生的经常被忽视的相互作用术语对于正确描述了极化化学中的光 - 肌肉交互作用至关重要。在完整的量子描述的基础上,我们模拟了MGH +分子的激发态动力学和光谱,并共偶联与光腔。我们表明,对于获得一致的模型来说,必须包含静态偶极矩和偶极子自我能量。我们构建了一种有效的两级系统方法,该方法重现了真实分子系统的主要特征,可用于模拟较大的分子集合。
今年的会议标志着 AREADNE 翻开了新的篇章,我们将会议地点从火山喷发的圣托里尼岛移到了宁静祥和的米洛斯岛。正如 KP 卡瓦菲的诗歌《伊萨卡》[1] 所提醒我们的那样,在前往遥远目的地的途中,所获得的冒险和知识可能比最终到达目的地更加光彩夺目。因此,我们移师米洛斯岛,将为我们带来全新的视角和新的灵感,这是我们进行科学探究的重要组成部分。米洛斯岛经常被描述为爱琴海的一颗隐藏宝石,它拥有宁静而人迹罕至的环境。从其独特的风景到其乡土建筑,从超凡脱俗的萨拉基尼科海滩到用于存放传统渔船的 sirma 车库,米洛斯岛为我们提供了一种深邃美丽、平和和沉思的氛围。
摘要:系统识别中的方法用于获得线性时间不变的状态空间模型,这些模型可以描述大量集合集合的水平平均温度和湿度如何随时间在小强迫下而演变。此处研究的整个集成集成在辐射 - 对流平衡中模拟了云系统解析模型。识别模型扩展了过去研究中使用的稳态线性响应函数,并提供了转移函数,噪声模型以及与二维重力波耦合时的转移函数,噪声模型和对流的行为。开发了一种新的程序,将状态空间模型转换为可解释的形式,该形式用于阐明和量化积云对流中的记忆。此处研究的线性问题是为获得数据驱动和解释的Coarteption的更一般努力的有用参考点。
在科学讨论中面对面交流的好处是显而易见的,面对面会议在我们领域的持续发展中发挥的作用也是显而易见的。对于我们所有人来说,我们的日常生活在办公室和远程工作之间来回切换,但作为科学家,尽管受到疫情的限制,我们还是找到了继续研究的方法。这是自病毒及其变种出现以来我们举办的第一次会议,迄今为止,它提交的研究是 AREADNE 会议上最令人兴奋的研究之一。我们,组织者,认为这一区别反映了我们作为一个领域的决心,即使在充满挑战的情况下也要找到有趣问题的答案。
摘要:现代光通信技术可以实现大规模多级(或M元)光信号,研究这种大规模M元光信号的量子力学性质对于统一量子信息科学和光通信技术的理解至关重要。本文针对纯量子态集合的量子力学非正交性,提出了一种基于量子检测理论中最小二乘误差准则的非正交性指标。首先,定义线性无关信号的指标,并通过数值模拟对所提出的指标进行分析。接下来,将该指标应用于超大规模M元相移键控(PSK)相干态信号。此外,将该指标与PSK信号的纯状态信道容量进行了比较。结果表明,即使信号传输功率很高,超大规模M元PSK相干态信号仍然表现出量子性质。因此,基于所提出的指数对高度大规模M元相干态信号的理论表征将是更好地理解量子流密码Y00等尖端光通信技术的第一步。
用于空间领域感知应用的加速 AI 驱动大气预测 丹尼·费尔顿 诺斯罗普·格鲁曼公司 玛丽·艾伦·克拉多克、希瑟·凯利、兰德尔·J·阿利斯、埃里克·佩奇、杜安·阿普林 诺斯罗普·格鲁曼公司 摘要 太空激光和监视应用经常受到大气效应的影响。气溶胶、云和光学湍流引起的大气衰减和扭曲会产生有害影响,从而对任务结果产生负面影响。2019 年 AMOS 会议上简要介绍的一篇论文介绍了 2017 年在哈莱阿卡拉峰安装的地面仪器。这些仪器仍在积极收集数据,它们正在提供前所未有的空间环境实时表征,包括精确的大气传输损耗。虽然实时测量是理解和表征空间环境的第一步,但仅靠它们是不够的。为了优化任务规划,许多应用都需要对空间环境进行准确的短期大气预测。虽然大气预报并不是什么新鲜事,但最近随着 21 世纪人工智能 (AI) 技术的应用,大气预报的技能得到了极大提升。这些技术是高性能计算 (HPC) 和深度学习 (DL) 的结合。本演讲的主题是使用来自地面大气收集系统的 TB 级数据训练预测模型,并使用图形处理单元 (GPU) 加速其训练和推理的能力。本研究侧重于预测的三个时间尺度。这些时间尺度包括短期(0 到 60 分钟)、中期(1 小时到 3 小时)和长期(3 到 48 小时)。这些时间尺度代表激光和/或监视应用和任务的各种决策点。在短期预测情况下,多种 DL 技术应用于从光学地面站 (OGS) 收集的本地数据。这些 DL 技术包括使用 U-Net 卷积神经网络和多层感知器 (MLP) 和随机森林 (RF) 模型的集合。 MLP 用于从激光云高仪和红外云成像仪 (ICI) 等仪器收集的点数据。对于中间时间尺度,卷积长短期记忆 (LSTM) 网络和 U-Net 均使用来自 NOAA 地球静止卫星云图集合的图像进行训练。最后,组合 U-Net 和自动编码器神经网络用于训练由 HPC 数值天气预报 (NWP) 模型模拟的大气预测器以进行长期预测。NWP 会产生许多 TB 的数据,因此,使用这些神经网络是优化其预测能力的理想选择。本研究利用了多种 HPC 资源。其中包括由四个 NVIDIA Tesla V100 GPU 组成的内部 GPU 节点以及毛伊高性能计算中心 (MHPCC) 的资源。结果表明,在几乎所有情况下,这些预测技术都优于持久性,而且偏差很小。使用 HPC 和 DL 推理实时进行预测的能力是未来的重点,将在会议上报告。1. 简介大气衰减和失真降低了太空激光和监视应用的功效。特别是,云层可以部分或完全遮挡目标,并阻止或要求降低光通信系统的数据速率。但是,通过准确表征和预测大气影响,可以减轻许多负面影响。本研究的目的是开发和完善一种最先进的大气预测系统,该系统可生成高分辨率的大气衰减预测,以支持太空激光和监视应用的决策辅助。为了实现这一目标,HPC 和 AI 的进步与数 TB 的高分辨率地面和太空大气数据集合相结合。多种 HPC 资源用于处理本研究所需的地面和卫星数据,并使用四个 NVIDIA Tesla V100 GPU 加速 AI 预测技术的训练和推理。该技术用于进行多时间尺度大气预测:1 小时预测、2 小时以上预测和 48 小时预测。最长 1 小时;最长 2+ 小时;最长 48 小时。最长 1 小时;最长 2+ 小时;最长 48 小时。