智能传感器的要求是多方面的:微型化、高可靠性和集成度、成本效益、密封性和生物相容性,适用于医疗应用。DYCONEX 已经开发出新颖的创新方法来设计、制造和实现此类传感器模块。通过将半导体行业的薄膜技术与传统的柔性电路制造技术相结合,可以制造出性能增强的基板,并使用标准 SMT 工艺进行组装。作为基础材料的液晶聚合物 (LCP) 是一种化学和生物稳定的热塑性聚合物,可实现尺寸最小、水分渗透率最低的密封传感器模块,而目前只有无机封装材料才能实现这种尺寸最小、水分渗透率最低的密封传感器模块。大规模自动化生产和廉价的有机材料使成本水平极具竞争力。
随着电子技术的发展和第五代蜂窝网络的建设,更高集成度、更大功率的电子设备得到广泛应用,对电子封装材料提出了更高的要求。高铅焊料合金在过去的几十年里被广泛应用于中低温焊接,但因毒性而被禁止使用。具有适当熔化和力学性能的金基焊料合金显示出巨大的替代高铅焊料合金的潜力,近年来受到重视。但与含铅焊料合金相比,新型金基焊料合金的研究相当不足,其性能和可靠性仍不明确。本文综述了近年来低温和中温金基焊料合金的研究,介绍和分析了它们的微观结构、力学性能和可靠性,并讨论和比较了金基焊料合金的新型加工工艺。
摘要:可见光集成光子学可用于传统(C 波段和 O 波段)硅光子学无法实现的应用,包括囚禁离子和中性原子量子实验、生物光子学和显示器。尽管展示了越来越先进的功能和集成度,但低功耗、单片集成的可见光开关和移相器的开发仍然是一项艰巨的挑战。在这里,我们展示了一种用于可见光谱的集成光子静电 MEMS 驱动的 Mach-Zehnder 干涉仪光开关。该设备在 540 nm 波长下以 7.2 dB 的消光比和 2.5 dB 的光损耗运行。测得的 10-90% 上升(下降)时间为 5(28)µ s,实现了约 0.5 nW 的低静态功耗。30 kHz 开关频率下的动态功耗估计为 < 70 µW。
CMOS 技术的巨大成功以及由此带来的信息技术进步,无疑归功于 MOS 晶体管的微缩。三十多年来,MOS 晶体管的集成度和性能水平不断提高。随后,为了提供功能更强大的数字电子产品,MOSFET 的制造尺寸越来越小、密度越来越高、速度越来越快、成本越来越低。近年来,微缩速度不断加快,MOSFET 栅极长度已小于 40 纳米,器件已进入纳米世界(图 1)[1]-[2]。所谓的“体”MOSFET 是微电子技术的基本和历史性关键器件:在过去三十年中,其尺寸已缩小了约 10 3 倍。然而,体 MOSFET 的缩放最近遇到了重大限制,主要与栅极氧化物(SiO 2 )漏电流 [3]-[4]、寄生短沟道效应的大幅增加以及迁移率急剧下降有关 [5]-[6],这是由于高度掺杂的硅衬底正是为了减少这些短沟道效应而使用的。
重量和重心的测量对飞机的设计、制造和使用有着十分重要的意义。飞机重量和重心的变化将影响飞机的飞行、机动、起飞和着陆性能,关系到人员安全和飞机的飞行安全,因此准确、快速地测量重量和重心是非常必要的。重量和重心的测量是为了确定飞机的重量和重心,并验证理论上的重量和重心,并且根据具体飞行的要求对飞机的重心进行重新定位[1-2] 。在设计和装配阶段,系统调试之前必须进行重量和重心的测量,在维修或改装之前和之后也必须进行这项工作。重量和重心的超限严重偏离将影响飞机的正常飞行,因此重量和重心的测量对于飞机制造非常重要。目前广泛使用的飞机重量及重心测量方法有千斤顶法、称重台法、复合法等,随着现代飞机越来越多地采用新技术、新方法,飞机的系统集成度越来越高,性能越来越先进,现有的测量方法已不能满足高精度、高速度的飞行安全要求。
联合测试与评估 (JT&E) 计划考虑新兴技术以及日益复杂和动态的联合多领域作战环境,以开发旨在提高美国作战效能、适用性和战斗生存力的解决方案。各军种和作战司令部 (CCMD) 帮助确定需要在其职责范围内解决的关键挑战,以保持联合多领域作战的优势。JT&E 计划提供作战测试和评估管理和专业知识,以开发、测试和验证联合解决方案,包括敏捷作战战术、技术和程序 (TTP)、使用概念 (CONEMP) 和作战概念 (CONOPS)。反过来,各军种和 CCMD 为 JT&E 项目的规划和执行及其向作战部队的成功过渡提供领导和支持。JT&E 计划侧重于无法在每个单独的军种和 CCMD 内经济或有效地维持的联合要求。鉴于跨领域的平台、网络和指挥与控制解决方案的集成度和依赖性不断提高,JT&E 的使命和对系统测试的独特关注对于国防部的战略目标(包括现代化)变得越来越重要。JT&E 测试技术、劳动力人才和回访对于充分评估整个 CCMD 的作战计划的有效性至关重要。
随着超大规模集成电路技术的飞跃发展,综合航空电子设备,集成度越来越高。数据总线对于设备快速、高效、可靠的数据传输具有不可替代的作用。ARINC-429总线是由美国航空电子设备制造商、定期航空公司、飞机制造商以及其他国家航空公司联合成立的航空无线电公司,由各公司制定的一系列统一的工业标准和规范[1-2]。PC/104嵌入式系统具有功耗低、体积小、工作温度范围宽、可靠性高等突出优点[3-5]。早期实现ARINC-429的数据传输方式一般采用MCU控制系统[6-8],但存在通信速率低、时序控制不够灵活的不足,不适合ARINC-429的高速通信。FPGA(Field Programmable Gate Array,现场可编程门阵列)具有工作主频高、可以并行处理数据等优点。针对传统方法的缺点,本文采用FPGA作为定时和译码控制芯片,采用16位数据总线,芯片采用ARINC429,HI-8582总线,使机载通信设备的传输速率达到100kbit/s的高数据率。
摘要 — 电池储能系统 (BESS) 是可再生能源集成度高的电力系统的重要资产,可通过控制为电网提供各种关键服务。本文介绍了使用具有电网跟踪 (GFL) 和电网形成 (GFM) 控制的兆瓦级 BESS 以及径流式 (ROR) 水电站恢复区域电力系统的实际经验。为了证明这一点,我们进行了集成实际 GFL 或 GFM 控制的 BESS 和负载组的电力硬件在环实验。本文给出的模拟和实验结果都展示了 GFL 或 GFM 控制的 BESS 在电力系统黑启动中的不同作用。结果为系统运营商提供了进一步的见解,了解 GFL 或 GFM 控制的 BESS 如何增强电网稳定性,以及如何在小容量 BESS 的支持下将 ROR 水电站转换为具有黑启动功能的装置。结果表明,与传统自下而下的方法相比,ROR 水电站与 BESS 相结合有潜力成为执行自下而上黑启动方案的使能要素之一,从而增强系统的弹性和稳健性。
本报告记录了为期三天的达格斯图尔研讨会 18252“无处不在的凝视感应和交互”的计划和成果。光学设备的小型化和计算机视觉的进步以及更低的成本点导致凝视感应功能在计算系统中的集成度增加。眼动追踪不再局限于控制良好的实验室环境,而是进入日常环境。因此,本次达格斯图尔研讨会汇集了计算机图形学、信号处理、可视化、人机交互、数据分析、模式分析和分类方面的专家,以及在不同学科中使用眼动追踪的研究人员:地理信息系统、医学、航空、心理学和神经科学,以探索未来的应用并确定可靠凝视感应技术的要求。这促进了对话,并允许:(1)计算科学家了解记录和解释凝视数据所面临的问题;(2)凝视研究人员考虑现代计算技术如何潜在地促进他们的研究。会议还讨论了有关凝视感应和交互的普遍部署的其他问题,例如在日常环境中部署凝视监测设备时的道德和隐私问题。
随着芯片技术的进一步革新,半导体集成电路为微电子系统的发展做出了不可替代的贡献。三维集成技术依靠垂直方向上的引线键合和芯片倒装实现多层电路键合,在封装级实现垂直互连,可以以较低的成本实现复杂的微系统,同时仍保持较高的性能和集成度。与传统的二维集成相比,三维集成在高端计算、服务器和数据中心、军事和航空航天、医疗设备等半导体和微电子领域得到越来越广泛的应用。因此,为适应时代发展的需求,对三维集成进行更深入和广泛的研究是必不可少的。三维集成系统的性能与工艺技术路线密切相关。晶圆键合三维堆叠技术通过晶圆键合和互连孔的工艺满足了芯片对增加带宽和降低功耗的需求,对未来的三维集成处理具有重要意义。此外,通过TSV(硅通孔)互连技术,三维堆叠系统的性能得到了极大的提升,因此TSV技术在三维集成电路应用中具有重要意义。当三维集成硬件技术遇到瓶颈时,与人工智能算法的结合成为重点,这也有效地提高了系统的整体性能。三维集成在微电子领域的应用涉及到方方面面,微纳加工技术中的凸点、高密度通孔制造与晶圆键合的结合以及技术的不断改进也对三维集成的材料、元件和电路提出了更高的要求。为了克服这些问题,我们分享了3D集成方面的最新进展,以增强其功能能力并使其适应不同的应用。“构建三维集成电路和微系统”特刊旨在收集与3D集成电路和微系统相关的优秀研究成果和综合报告。特刊可在线获取,网址为https://www.mdpi.com/journal/processes/special_issues/TDIC。本特刊涵盖了3D集成方面的各种理论和实验研究,重点关注3D集成系统的工艺和技术路线以及人工智能算法与不同应用领域的结合。3D集成的一项重大贡献在于光互连技术。新一代数据中心进一步向高速化、智能化方向发展,对光互连技术的迭代需求巨大,基于有源光子中介层的三维集成可实现高集成度、高带宽、低功耗等优势,