流场;2) 从电池顶部连接到对电极集电器;3) 参比电极集电器;4) 对电极集电器;a) 集电器箔上的工作电极;b) 隔板;c) 参比电极(钠金属);d) 对电极(钠金属);e) 对电极安装板。b) DEMS 测量装置流程图。测量和控制单元的字母符号图例:C = 控制器,F = 流量,I = 指示器,P = 压力,T = 温度。
已经开发出一种基于丙酮的从锂离子电池电极中回收聚偏氟乙烯 (PVDF) 的工艺。首先使用丙酮溶解 PVDF 粘合剂,然后将电极材料在丙酮中搅拌以使其与集电器分层。电极分离成电极材料、PVDF 粘合剂和集电器。测量了 PVDF 在丙酮中的溶解度与温度的关系,发现溶解度随温度升高而增加,在 150 ◦ C 左右达到最大值。测量了纯态和电极中 PVDF 的溶解速率与温度的关系。前者比后者快得多。对 PVDF 从电极中扩散的情况进行了数学建模,以预测材料回收的时间。该研究表明,通过从锂离子电池中回收 PVDF、电极材料和集电器,可以建立直接回收工艺。
锂离子电池是一类电化学电池,包含不同的化学变体,但所有变体都使用类似的过程运行。它们依赖于“摇椅”设计,其中 Li+ 离子在充电过程中从阴极转移到阳极,然后在放电过程中转移回阴极。对于大多数应用,主要的阳极材料是石墨或某种形式的碳,尽管钛酸锂 (LTO) 用于一些更高功率或高循环寿命场景。阴极材料有多种类别,包括磷酸铁锂 (LFP)、钴酸锂 (LCO)、镍锰钴酸锂 (NMC)、锰酸锂 (LMO) 和镍钴铝酸锂 (NCA)。上面列出的电极活性材料铸造在集电器上,集电器通常是铜(阳极)和铝(阴极),尽管 LTO 阳极也使用铝集电器。每种类型的阴极材料都有不同的设计特定能量(以 Wh/kg 为单位)和电池级标准化条件下的预期循环寿命,如图 1 所示。
+ 工艺类似于采用箔集电器的锂离子电池 + 提高倍率能力、低温性能和热量管理 + 由于 CF x 的发热,这些电池的高倍率放电仍然受到限制。热量的产生给电池组带来了重大挑战。
- EP23383283.1“获得微米厚、米长的 CNT 巴基纸的方法及其在热电和电池集电器中的用途”,M. Campoy-Quiles、O. Zapata-Arteaga、A. Ponrouch、T. Purkait、B. Dörling 和 I. Corzo-Alvarez
电池的安全性、性能和寿命与制造电池的材料特性(包括其晶体结构)息息相关。在整个开发和制造过程中,电极、隔膜、集电器和所有其他组件都需要进行全面表征和监控。X 射线衍射 (XRD) 在这一表征中起着至关重要的作用,它是一种非破坏性方法,可提供原子级的详细结构信息。在现代 XRD 系统中,这不仅适用于非原位测量的单个电池组件,甚至适用于通过原位或原位测量完成的、正常运行的电池。
空军研究实验室——俄亥俄州代顿市通过自主实验实现碳纳米管的规模合成——2,200,000 美元空军研究实验室正在开发一种反应器,通过燃烧过程高产出高质量碳纳米管。与同类方法相比,该技术将使生产率提高 100 倍。这些纳米管可用于未来的能源应用和零排放氢气生产。拟议的技术将适用于电池和轻质高性能复合材料。亚的斯能源——马萨诸塞州萨默维尔模拟地质氨作为主要能源资源——4,500,000 美元亚的斯能源正在开发模拟地质氨技术,使氨成为主要能源资源。拟议的技术将利用石油和天然气技术使亚铁资源与工程流体反应生成氨。亚的斯能源将结合实验结果与计算模型,从批量反应扩展到现场试点演示。他们的方法通过利用地球自然资源的化学和热潜力,克服了当前氨生产途径的高能源成本和碳强度挑战。ALUMINIO INC.——加利福尼亚州圣卡洛斯用于低成本、可持续太瓦时能量存储的新型集电器——3,000,726 美元Aluminio Inc. 正在开发新型集电器技术,以降低基于磷酸铁锂 (LFP) 的锂离子电池的生产成本。该技术将用由轻质和丰富的贱金属组成的合金箔取代 LFP 电池阳极侧的铜作为集电器。拟议的技术将适用于所有商业相关的锂离子电池,最终用途应用包括电动汽车和电池储能系统。 CIRCULARITY FUELS – 加利福尼亚州雷德伍德城 电力或地质氢与合成天然气之间的高效、紧凑转换 – 3,600,000 美元 Circularity Fuels 正在开发新型反应器和催化剂技术,目的是利用清洁能源将生物或大气二氧化碳 (CO 2 ) 流转化为碳中性燃料。拟议的技术将有效捕获大气中的 CO 2 并将其转化为合成天然气。拟议的技术将适用于高纯度甲烷、推进剂级甲烷、可再生天然气、沼气升级和液体燃料生产(例如可持续航空燃料、低硫柴油)市场。COLDQUANTA, INC. DBA INFLEQTION – 科罗拉多州博尔德 增强中性原子计算机以优化能量输送 – 6,165,189 美元 Infleqtion 正在开发量子计算系统和算法工具集,目的是提高能源网的效率。项目团队将提供比传统方法更高质量的机组组合解决方案,其规模和运行时间与能源行业工作流程一致。所提出的技术将适用于能源行业,实现能源效率、稳定性和智能用电。