摘要 . 淡水小龙虾 (Cherax quadricarinatus von Martens, 1868) 也称为红螯虾,是一种淡水龙虾 (甲壳类动物),具有开发为消费商品的潜力。龙虾养殖的发展可以采用集约化系统进行。幼体生产是生产食用规格龙虾的重要关键之一。幼体阶段的生产力必须由生长和存活来支持。适当的饲料是影响幼体生长和存活的重要关键之一。必须以全面的方式传达有关幼体所需营养的信息,以便对龙虾养殖发展工作有用。这篇评论文章旨在阐述幼体红螯虾的营养需求及其代谢作用。该评论通过研究印度尼西亚国内和国际上的各种文章进行,这些文章讨论了与红螯虾相关的主题,例如天然食物和饲料营养在幼体生长中的作用。综述结果表明,红螯螯虾养殖的重要问题之一是幼虾的生长和存活。幼虾表现出非选择性摄食行为,但存在个体发育过程中的饮食变化。红螯螯虾摄食习性特点是外源摄食,一般以腐烂的动植物、大型无脊椎动物、碎屑、大型植物和鱼类为食。红螯螯虾幼虾表现出滤食和刮食行为,属于非选择性摄食者。在养殖环境中,一些研究表明红螯螯虾幼虾以 Alona sp.、Daphnia sp.、Artemia sp.、红虫、蚕以及一些与其他有机物的组合(如米粉、胡萝卜、金螺、蚯蚓和凤尾鱼)为食。营养成分与摄食习性、个体发育过程中的饮食变化及其酶代谢之间存在一定的关系。幼年红螯虾需要的蛋白质多于碳水化合物和脂质,尽管维生素和矿物质的整体营养摄入对生长和生存很重要。关键词:摄食习性、生产力、蛋白质、个体发育。引言。淡水龙虾是具有养殖和商业发展潜力的小龙虾 (甲壳类动物) 之一。广泛养殖的小龙虾品种之一是红螯虾 (Cherax quadricarinatus von Martens, 1868),它是澳大利亚北部和巴布亚新几内亚东南部的本土品种 (Lawrence & Jones 2002;Snovsky & Galil 2011;Partini 等人 2019;Akmal 等人 2021;Faiz 等人 2021)。
大学,德拉敦 - 248007,北阿坎德邦,印度 2 比萨大学航空航天工程系,比萨,意大利 摘要 本文展示了通过种植新鲜蔬菜并在模拟生长条件下生产它们来支持人类在太空中生活的可能性。向空间站和载人航天任务供应新鲜蔬菜非常复杂,而且成本高昂。在太空中种植植物可能很困难,因为太空中没有重力,没有土壤、肥料等。水培是一种不使用自然资源(即土壤、空气、天然肥料等)来种植植物的先进技术。它与温室相结合,技术先进,集约化程度高。水培技术在封闭室内进行,使用蒸气压差 (vpd) 控制器、营养流和水流控制器来控制空气、温度和湿度。一个主要问题是微重力,它导致根的生长方式与土耕不同。在微重力和低重力条件下,太空农业采用各种方法,如水培、气培等。本文重点介绍水培设计、结构、操作、技术、适合植物的基质、pH 值、水位以及水培技术所需的控制器。本文的主要目标是建立一个完全自动化、坚固且万无一失的初步设计,并找到解决由于重力和真空条件引起的基质和多光谱照明问题的最终解决方案。全自动系统有助于减少劳动力并为宇航员提供健康的食物。关键词:水培、太空农业、宇航员、植物、营养素、蒸汽压不足控制器 I. 简介由于太空任务补给的成本效益高,在太空种植蔬菜具有巨大的潜力。太空农场的存在将有助于创造自然环境,因为植物可用于循环废水、产生氧气并持续净化空气。除了航天器中占很大一部分重量的宇航员,他们还必须携带罐装太空食品,而这些食品在宇航员的饮食中营养和维生素含量很低。通过太空农业,可以在太空中生产出味道和质量更好的新鲜蔬菜,并减少宇航员饮食中的维生素缺乏症。通过将宇宙飞船改造成具有水文循环和养分循环的人工生态系统,太空农业可以成为现实。能否定期为机组人员提供氧气、水和食物,同时几乎不需要从地球进行补给,将决定太空是否可以殖民。地球上种植植物作物是为了支持这些任务,因此建立以植物为基础的食品生产系统对于维持
简介 了解地球近地表环境中化学元素的丰度和空间分布对于人类的许多努力都至关重要,从定位我们未来的矿产资源到监测自然过程或人类活动引起的地球化学变化。全世界都担心环境中的化学物质对人类、动物、农业和生态系统健康的潜在破坏性影响。经济和人口增长迅速,加剧了土地退化和不受控制的城市化、工业化、集约化农业实践和含水层过度开发造成的污染等问题。这些问题和其他问题正在影响地球表面的地球化学及其从当地到全球的生命支持系统的可持续性。另一方面,全世界也关注如何确保矿产和能源资源满足不断增长的人口的需求。了解地球表面的地球化学对于确定这些资源的位置并以对环境负责的方式开发它们至关重要。系统地球化学测绘是评估和监测地球表面化学元素水平变化的最佳方法。地球化学图历来在解决一系列环境问题以及在地方到国家范围内识别潜在矿产资源方面具有重要价值。本提案是根据 IGCP 259“国际地球化学测绘”(Darnley 等人,1995 年)的规范,为非洲开发一个陆基多元素地球化学基线数据库,用于矿产资源和环境管理。这项针对非洲的项目提案符合 GEO 的愿景“实现一个未来,其中的决策和行动以协调、全面和持续的地球观测和信息为依据,造福人类”。这也将成为 AfriGEOSS (2014) 和 IUGS 倡议“资源未来世代” (IUGS, 2014) 的重要贡献。目标和动机:为矿产资源和环境管理开发陆基多元素地球化学基线数据库。非洲是世界第二大洲,也是人口第二多的大陆。其面积(包括邻近岛屿)为 30,221,532 平方公里。要开发这样的数据库,必须启动一项能力建设计划,培训所有非洲国家的专业应用地球化学家。根据维基百科,非洲由 54 个主权国家和 10 个非主权领土组成(https://en.wikipedia.org/wiki/List_of_sovereign_states_and_dependent_territories_in_Africa# Sovereign_states)。为了使非洲能够开发其丰富的矿产资源并保护其环境,它迫切需要一个协调的地球化学基线数据库以供规划和决策。活动联合负责人姓名:David B. Smith、Xueqiu Wang、Alecos Demetriades、Anna Ladenberger、Aberra Mogessie、Beneah Odhiambo 和 Gabi Schneider 主要合作组织:EuroGeoSurveys、IUGS/IAGC 全球地球化学基线工作组、UNESCO 全球尺度国际研究中心
I. 价值主张 建议 1:促进全社区更积极地参与舒斯瓦普地区经济发展 建议 2:为进一步完善商业成本价值主张,完成 SEDS 服务区的比较总商业成本分析。 建议 3:继续致力于强化投资价值主张,重点关注:a) 随时可动工的工业用地;b) 通过规划政策支持实现商业用地集约化——索伦托;c) 确定农产品水资源可用性;d) 千兆宽带扩展;e) 通过规划政策支持实现住房选择和可负担性。 II. 目标定位 建议 4:在关键目标行业推行行业发展规划,以支持投资准备和吸引举措。 建议 5:在顶级目标地区进行目标营销(例如 Facebook 广告)。 III. 投资准备 1. 组织 建议 6:继续实施地方经济发展战略。 建议 7:实施投资吸引战略。建议 8:实施投资牵头管理流程。2. 评估建议 9:每 5 年完成一次行业部门和劳动力分析建议 10:倡导 CSRD OCP 中的住房创新政策和分区条例,以实现住房选择和可负担性选项 3. 创业发展建议 11:倡导创造缺失的中间商业空间建议 12:开展 1-2 个优先业务保留和扩展计划建议 13:将采购作为业务保留和扩展策略 4. 社区参与建议 14:每年举行一次投资峰会。建议 15:继续深化与 SEDS 的关系/将其与 Salmon Arm 经济发展协会、北舒斯瓦普商会和南舒斯瓦普商会以及舒斯瓦普旅游局建立联系。建议 16:在劳动力发展方面,与奥卡纳根学院 - 萨蒙阿姆校区合作开发和维持教育培训计划 - 包括学徒制 - 以满足农业、林业、建筑和制造业的需求并支持劳动力的增长和发展建议 17:寻求 ETSI 资助社区发展计划建议 18:倡导/参与区域卫生服务招聘 5. 营销和推广建议 19:实施优先营销要素 - 更新网站、机会表、投资指南、居民搬迁指南建议 20:更广泛地实施营销计划 6. 基础设施发展/投资计划建议 21:继续实施和加速千兆宽带计划。
家禽是人类消费的最经济的蛋白质来源,以肉和蛋的形式存在。近几十年来,由于遗传选择、饲料质量、育种方法、加工和营销方面的技术进步,家禽业的发展已超过发达国家和发展中国家的所有其他农产品。家禽生产的目标是尽可能经济地将饲料转化为食物,这对于管理疾病的风险和后果至关重要。虽然饲料转化的生物效率主要由内在或遗传因素决定,但外在疾病因素最终决定了生物和财务方面的运营效率。在不利条件下,注射活疫苗预防家禽呼吸道感染会导致临床疾病状态,造成重大经济损失。在高度组织化和集约化的家禽生产中,任何疾病的爆发都会对动物的健康和福利产生重大影响,导致技术性能和盈利能力下降。由于遗传和营养的改善,生产周期缩短,使动物更难从疾病爆发中恢复过来。对于地方性疾病,疾病爆发主要导致个体农民的经济损失,而对于流行病,整个家禽生产部门可能会受到强制预防措施(如检疫或销毁家禽)的影响。另一个挑战是,由于兽医和人类医学中抗生素耐药性的日益发展,这种预防不应通过增加抗生素的预防性使用来实现。因此,生物安全是家禽疾病预防概念的核心组成部分。为了使家禽生产发挥其全部遗传潜力,必须将动物饲养在无压力的环境中。疾病对生产力的影响在疾病的临床症状出现之前就很明显。环境疾病因素可以决定疾病的进展。兽医的作用已经从预防、诊断和控制单个鸟类的特定疾病转变为预防和限制更复杂的多因素疾病的影响,以最大限度地提高鸡群的生产力。生产力是动物福利和健康的一个很好的指标。在现有的农业条件下,需要一种综合方法,将环境和临床因素及其流行病学相关性结合起来。家禽生产系统多种多样,从工业化、高度一体化的肉鸡生产系统到以村庄为基础的系统。粮农组织 2004 年在其关于亚洲农业实践类型的文件中提到,将家禽生产系统分为四个部门,即:生物安全水平较高的工业综合系统,鸟类/产品进行商业销售;生物安全水平中等至高的商业家禽生产系统,鸟类/产品通常进行商业销售;生物安全水平低至最低的商业家禽生产系统,鸟类/产品进入活禽市场;生物安全水平最低的乡村或后院生产系统,鸟类/产品在当地消费。前两个部门包括大型企业,这些企业严格遵循高生物安全标准。本文介绍了农村后院家禽生产系统和农村小农户在商业家禽生产系统下饲养鸟类以供应活禽市场所应遵循的突出生物安全方面。
景观建筑杂志,14(2),6-19。 https://doi.org/ 10. 1080/ 18626 033. 2019. 1673562 Albert, C., Brillinger, M., Guerrero, P., Gottwald, S., Henze, J., Schmidt, S., Ott, E., 和 Schröter, B. (2021)。规划基于自然的解决方案:原则、步骤和见解。 Ambio,50(8),1446–1461。 https://doi.org/10.1007/s1328 0-020-01365-1 Amano, T.、Berdejo-Espinola, V.、Christie, AP、Willott, K.、Akasaka, M.、Baldi, A.、Berthinussen, A.、Bertolino, S.、Bladon, AJ、Chen, M.、Choi, C.-. Y.、Bou Dagher Kharrat, M.、de Oliveira, LG、Farhat, P.、Golivets, M.、Hidalgo Aranzamendi, N.、Jantke, K.、Kajzer-Bonk, J.、Kemahlı Aytekin, M. Ç., ... Sutherland, WJ (2021)。利用非英语科学保护全球生物多样性。 PLoS Biology,19(10),e3001296。 https://doi.org/10.1371/ journ al.pbio.3001296 Au Yeung, J., Kraljevic, Z., Luintel, A., Balston, A., Idowu, E., Dobson, R. J., & Teo, J. T. (2023)。人工智能聊天机器人尚未准备好用于临床。数字健康前沿,5,60。https://doi.org/10.3389/FDGTH.2023.1161098 Ausseil, AGE、Daigneault, AJ、Frame, B. 和 Teixeira, EI (2019)。对新西兰气候和社会经济变化的影响和影响进行综合评估。环境建模和软件,119,1-20。 https://doi.org/10.1016/j.envso ft. 2019. 05.009 Babi Almenar, J.、Elliot, T.、Rugani, B.、Philippe, B.、Navarrete Gutierrez, T.、Sonnemann, G. 和 Geneletti, D. (2021)。基于自然的解决方案、生态系统服务和城市挑战之间的联系。土地使用政策,100,104898。Berdejo-Espinola,V.,& Amano,T.(2023)。人工智能工具可以提高科学的公平性。科学,379 (6636),991。https://doi.org/10.1126/sciencece.adg9714 Birner, R.,Daum, T.,& Pray, C. (2021)。谁推动了农业数字化革命?回顾供给侧趋势、参与者和挑战。应用经济观点与政策,43(4),1260–1285。 https://doi.org/10.1002/AEPP.13145 Borgesius, FJZ 和 Zuiderveen Borgesius, FJ (2020)。通过算法和人工智能加强对歧视的法律保护。 http://dx.doi.org/10.1080/13642987.2020.1743976 Brendel, A.、Mirbaie, M.、Lembcke, T.-B. 和 Hofeditz, L. (2021)。人工智能的道德管理。 http://doi.org/10.3390/su130 41974 Brower, AL、Sprague, R.、Vernotte, M. 和 Mcnair, H. (2018)。麦肯齐盆地的农业集约化、所有权和景观变化。新西兰草原杂志,80,47-54。 Brugger,J.,和Crimmins,M.(2015)。设计支持地方气候变化适应的机构:从美国合作推广系统案例研究中获得的见解。天气、气候与社会,7(1),18-38。 https://doi.org/ 10. 1175/ WCAS-D-13-00036. 1 Budhwar,P.、Chowdhury,S.、Wood,G.、Aguinis,H.、Bamber,GJ、Beltran,JR、Boselie,P.、Lee Cooke,F.、Decker,S.、DeNisi,A.、Dey,PK、Guest,D.、K noblich,AJ、Malik,A.、Paauwe,J.、Papagiannidis,S.、Patel,C.、Pereira,V.、Ren,S.、...... Varma,A. (2023)。生成人工智能时代的人力资源管理:ChatGPT 的观点和研究方向。人力资源管理杂志,33(3),606-659。 https://doi.org/10.1111/1748- 8583. 12524 Calliari, E., Staccione, A., 和 Mysiak, J. (2019)。基于自然的气候防护解决方案的评估框架。整体环境科学,656,691-700。 https://doi.org/ 10. 1016/j.scito tenv.2018.11.341 Chausson, A., Turner, B., Seddon, D., Chabaneix, N., Girardin, CAJ, Kapos, V., Key, I., Roe, D., Smith, S., & Seddon, N. (2020)。)。绘制基于自然的解决方案的有效性
1. Garcia-Bastidas, F. 等人。哥伦比亚首次报道由 Fusarium odoratissimum 引起的卡文迪什香蕉枯萎病热带小种 4。APS 出版物。(2019 年)。259 https://doi.org/10.1094/PDIS-09-19-1922-PDN 260 2. Varma, V. 和 Bebber, DP。气候变化对全球香蕉产量的影响。Nat. 261 Clim. Change 9 , 752-757 (2019)。262 3. Simmonds, NW 和 Shepherd, K。栽培香蕉的分类和起源。J. 263 Linn. Soc. Bot。55 , 302-312 (1955)。 264 4. Gold, CS、Kiggundu, A.、Abera, AMK 和 Karamura, D. 乌干达 Musa 品种的多样性、分布和农民偏好。Exp. Agric. 38, 39-50 (2002)。 266 5. Gambart, C. 等人。农业生态集约化战略对农场绩效的影响和机遇:乌干达中部和西南部香蕉种植系统案例研究。食品系统可持续发展前沿。23, 87 (2020)。 269 6. Wielemaker, F. 引自:Kema, GHJ 和 Drenth, A. (eds.)。实现香蕉的可持续种植。第 1 卷:栽培技术。伯利·多德农业科学系列。 271 Burleigh Dodds Science Publishing,英国剑桥(2018 年)。272 7. Ordonez,N. 等人。最糟糕的情况是香蕉和巴拿马病——当植物和病原体克隆相遇时。PLoS Pathog。11,e1005197(2015 年)。274 8. Ndayihanzamaso,P. 等人。开发用于检测东非和中非尖镰孢菌古巴专化种谱系 VI 菌株的多重 PCR 检测方法。欧洲植物病理学杂志(2020 年)。277 9. Soluri,J。口味的解释:出口香蕉、大众市场和巴拿马病。环境。278 Hist。7,386-410(2002 年)。 279 10. Stover, RH 疾病管理策略和香蕉产业的生存。植物病理学年鉴。24 ,83-91 (1986)。281 11. Bubici, G.、Kaushal, M.、Prigigallo, MI、Gómez-Lama Cabanás, C. 和 Mercado-Blanco, J. 香蕉枯萎病的生物防治剂。微生物学前沿。10 ,616 (2019)。283 12. Kaushal, M.、Mahuku, G. 和 Swennen, R. 枯萎病感染田中有症状和无症状香蕉相关的根部定植微生物组的宏基因组学见解。植物。9 ,263 (2020)。 286 13. Mollot, G.、Tixier, P.、Lescourret, F.、Quilici, S. 和 Duyck, PF 新的主要资源增加了对香蕉农业生态系统中害虫的捕食。农业与昆虫学。14 , 317-323 288 (2012)。 289 14. Djigal, D. 等人。覆盖作物改变香蕉农业生态系统中土壤线虫食物网。土壤生物化学。48 , 142-150 (2012)。 290 15. Karangwa, P. 等人。东非和中非尖镰孢菌古巴专化的遗传多样性。植物疾病。102 , 552-560 (2018)。 293 16. Jassogne, L. 等人。咖啡/香蕉间作为乌干达、卢旺达和布隆迪的小农咖啡 294 农民提供了机会。在 G. Blomme、P. Van Asten 和 B. Vanlauwe 中,撒哈拉以南非洲湿润高地的香蕉系统(第 144-149 页)。国际农业和生物科学中心。沃灵福德:CABI。(2013 年)。 17. Norgrove, L. 和 Hauser S. 喀麦隆南部农林业系统中不同树木密度和“刀耕火种”与“刀耕火种”管理下芭蕉的产量。大田作物研究。78,185-195(2002 年)。 18. Zhu, Y. 等人。水稻遗传多样性和疾病控制。自然 406,718-722(2000 年)。 19. Deltour, P. 等人。农林复合系统对香蕉枯萎病的抑制作用:土壤特性和植物群落的影响。农业生态系统环境。239,303 173-181(2017 年)。304
