摘要 — 虽然基于深度学习的图像去雨方法近年来取得了长足的进步,但在实际应用中仍存在两个主要缺点。首先,以去雨为代表的低级视觉任务与以物体检测为代表的高级视觉任务之间的差距很大,低级视觉任务几乎无法为高级视觉任务做出贡献。其次,去雨数据集的质量有待提高。事实上,很多基线中的雨线与真实的雨线差距很大,去雨数据集图像的分辨率普遍不理想。同时,低级视觉任务和高级视觉任务很少有共同的数据集。本文探索了低级视觉任务与高级视觉任务的结合。具体而言,我们提出了一种用于减少降雨影响的端到端物体检测网络,该网络由两个级联网络组成,分别是一个改进的图像去雨网络和一个物体检测网络。我们还设计了损失函数的组件以适应不同子网络的特征。然后,我们基于 KITTI 数据集提出了一个用于雨水去除和物体检测的数据集,我们的网络在该数据集上超越了最先进的技术,指标有了显著的提高。此外,我们提出的网络在自动驾驶汽车收集的驾驶视频上进行了测量,并在雨水去除和物体检测方面显示出了积极的结果。
“现成的”有刷换向直流电机通常倾向于作为“起点”,因为几乎每种电机应用都有特定的设计和性能标准需要满足。电机制造商通常通过定制产品组件来满足这些标准,以满足需求。最终用户因此获得了按要求设计的电机,并且在此过程中,如果定制组件成为“标准”,其他人最终可能会受益。事实上,电机技术的许多创新都源于针对特定客户挑战的特定解决方案。
1)对于LI-XX电池,自动判断电池的数量,每个电池的低 /中 /高截止电压为:2.5V / 2.75V / 3.0V。2)对于NI-XX电池,低 /中 /高截止电压为启动电压的60% / 65% / 70%。5。启动模式:normal /soft /super-soft,默认是普通启动。正常人适合固定翼飞机。软 /超柔软适合直升机,软 /超柔软模式的初始速度非常慢,1秒(软启动) / 2秒 / 2秒(Super-Soft Soft Startup)从启动到全速。但是,如果油门关闭(油门棒移至底部),然后在第一个启动后的3秒内再次打开(油门棒移动),则该启动将处于正常模式,以摆脱特技飞行中的慢速油门响应引起的崩溃的机会。6。时机:低 /中 /高,默认值是中等的。在正常情况下,大多数电动机都可以使用较低的时机。,但要提高效率,我们建议使用6杆及以上的2杆电动机和中等时机的时间较低。对于更高的速度,可以使用较高的时机。注意:较高的时机可能会引起某些电动机的问题。请先在地面上进行测试!
双传感器,1/1.8" 逐行扫描 CMOS 全彩图像输出 分辨率最高可达 2688 x 1512 35 倍光学变焦,16 倍数字变焦 红外距离最远 250 米,智能红外 IP67,带雨刷
根据第五次全国气候评估,美国西部对水的需求正在增加,干旱的频率和强度预计将加剧。通过人工增雨增加降水的能力可以帮助缓解干旱带来的一些水资源管理挑战。人工增雨在美国自 1940 年代开始实行。然而,最近,雷达和传感器技术的进步使得研究具有足够的精度,表明人工增雨在某些条件下可能是有效的。
关于 Rain Carbon Inc. Rain Carbon Inc. 是一家领先的垂直整合全球碳基产品生产商,其产品是日常生活必需品的必需原材料。我们分为两个业务部门:碳和先进材料。我们的碳业务部门将石油精炼和钢铁生产的副产品升级为高价值的碳基产品,这些产品是铝、石墨电极、炭黑、木材防腐、二氧化钛、耐火材料和其他几个全球行业的关键原材料。我们的先进材料业务部门通过将部分碳产量和其他原材料进行创新的下游转化,将其转化为高价值、环保和先进材料产品,延伸了碳加工的价值链,这些产品是特种化学品、涂料、建筑、汽车、石油和其他几个全球行业的关键原材料。有关 Rain Carbon 的更多信息,请访问 www.raincarbon.com。
1. 将速度控制器连接到电机和接收器。不要连接电池。 2. 打开发射器并将油门杆移至全油门。 3. 连接电池:三音旋律声音 -(仅适用于 LiPO:)电池计数的蜂鸣序列 - 长蜂鸣 - 三音旋律 - 第一个编程参数的蜂鸣声(参见参数表)。如果没有发出确认信号,请检查接收器是否工作正常;或者为油门通道操作伺服反向。 4. 编程模式由八个可用参数的不断重复循环组成。这八个参数由不同的蜂鸣序列指示(参见参数表)。 5. 要选择特定参数,请在发出下一个参数的蜂鸣信号之前将油门杆移至停止位置。 6. 您现在位于设置菜单,您可以从最多三个设置中选择一个,具体取决于参数。各种设置也由不同的蜂鸣序列表示(参见设置表)。 7. 如果您想要更改设置,只需在听到蜂鸣声后向上移动油门杆即可进行相应设置。确认旋律表示已采用该设置。其他参数通过蜂鸣声指示并可选择。或者,您可以通过拔下电池退出编程模式。8. 选择参数 7 或 8 后,控制器将退出编程模式并在正常模式下工作。
1. 将速度控制器连接到电机和接收器。不要连接电池。 2. 打开发射器并将油门杆移至全油门。 3. 连接电池:三音旋律声音 -(仅适用于 LiPO:)电池计数的蜂鸣序列 - 长蜂鸣 - 三音旋律 - 第一个编程参数的蜂鸣声(参见参数表)。如果没有发出确认信号,请检查接收器是否工作正常;或者为油门通道操作伺服反向。 4. 编程模式由八个可用参数的不断重复循环组成。这八个参数由不同的蜂鸣序列指示(参见参数表)。 5. 要选择特定参数,请在发出下一个参数的蜂鸣信号之前将油门杆移至停止位置。 6. 您现在位于设置菜单,您可以从最多三个设置中选择一个,具体取决于参数。各种设置也由不同的蜂鸣序列表示(参见设置表)。 7. 如果您想要更改设置,只需在听到蜂鸣声后向上移动油门杆即可进行相应设置。确认旋律表示已采用该设置。其他参数通过蜂鸣声指示并可选择。或者,您可以通过拔下电池退出编程模式。8. 选择参数 7 或 8 后,控制器将退出编程模式并在正常模式下工作。
摘要 高密度互连 (HDI) 印刷电路板 (PCB) 和相关组件对于使太空项目受益于现代集成电路(如现场可编程门阵列 (FPGA)、数字信号处理器 (DSP) 和应用处理器)日益增加的复杂性和功能性至关重要。对功能的不断增长的需求转化为更高的信号速度和越来越多的 I/O。为了限制整体封装尺寸,组件的接触焊盘间距会减小。大量 I/O 与减小的间距相结合对 PCB 提出了额外的要求,需要使用激光钻孔微孔、高纵横比核心通孔和小轨道宽度和间距。虽然相关的先进制造工艺已广泛应用于商业、汽车、医疗和军事应用;但将这些能力的进步与太空的可靠性要求相协调仍然是一个挑战。考虑了两类 HDI 技术:两级交错微孔(基本 HDI)和(最多)三级堆叠微孔(复杂 HDI)。本文介绍了按照 ECSS-Q-ST-70-60C 对基本 HDI 技术的鉴定。在 1.0 mm 间距时,该技术成功通过了所有测试。在 0.8 mm 间距时,在互连应力测试 (IST) 和导电阳极丝 (CAF) 测试中会遇到故障。这些故障为更新 HDI PCB 的设计规则提供了基础。简介通常认为 HDI PCB 有两个主要驱动因素:(1) 关键元件的小间距和高 I/O 数量;(2) 这些元件的性能不断提高,导致电路板上的信号线速度加快。微孔的使用可以缩短信号路径的长度,从而提高信号完整性和电源完整性。由于扇出内的密集布线,关键网络可能会受到串扰。在 1.0 mm 间距元件的引脚之间布线差分对需要精细的线宽和间距。0.8 mm 间距元件的埋孔之间不再可能进行差分对布线。需要在扇出区域内分割线对,分割长度决定了分割对对信号完整性的影响。单端网络宽度的变化以及差分对间距和/或走线宽度的变化将导致阻抗不连续。因此,选择合适的层结构和过孔类型将同时改善布线能力和信号完整性。在定义 HDI PCB 技术参数时,一个重要的考虑因素是元件间距和 I/O 数量不能独立处理。间距为 1.0 mm 的高引脚数元件(> 1000 引脚)可能需要使用微过孔来减少总层数或改善受控阻抗线的屏蔽。另一方面,仅具有两排焊球的 0.5 mm 间距元件的逃逸布线可在不使用微孔和细线宽和间距的情况下进行。增加层数以便能够布线一个或多个高引脚数元件将导致 PCB 厚度增加,这会通过限制通孔纵横比影响最小通孔钻孔直径,从而再次限制布线可能性。为了定义 HDI 技术参数,需要了解过去、现在和未来太空项目中使用的面阵器件 (AAD) 的规格。纵观目前正在开发的复杂太空元件,间距为 1.0 mm 的陶瓷柱栅阵列 (CCGA) 仍将是未来几年的首选封装。例如,新的 Xilinx FPGA (RT-ZU19EG: CCGA1752) [1]、CNES VT65 电信 ASIC (CCGA1752) [2] 和欧洲航天局 (ESA) 的下一代微处理器 (NGMP, CCGA625) [3] 就是这种情况。间距较小的柱状网格阵列 (0.8 毫米) 已在研发中得到展示 [4],尽管尚未发现商业实现。带有非塌陷高铅焊球的陶瓷球栅阵列 (CBGA) 用于军事和航空航天应用 [5]。当间距为 0.8 毫米及以上 (0.5 毫米) 时,陶瓷 (即密封) 封装会成为可靠性风险,因为更小的间距 (0.8 毫米) 会降低封装的可靠性。