电动飞行 - Keith Shaw - 无线电控制运动飞行(来自《模型飞机新闻》出版商)- 1994 年 1 月 虽然为模型飞机提供动力的方法有很多种,但我认为电力具有几个突出的优势。尽管最常被提及的特点是清洁和噪音小,但真正的优势是可靠性、可重复性和多功能性。不可靠的电力系统是让未来的模型制作者最常遇到的挫折。有了电力,就不必启动故障的发动机,不必在旋转的切肉机附近摆弄针阀,不必担心怠速不稳或电热塞烧坏。不必再担心油箱位置、燃油管路中的针孔、油浸结构损坏、振动引起的无线电故障和设备老化。相反,你只需将飞机停在滑行道上,推进“油门”,滑行并起飞!电力的可重复性很强,如果你在飞机是新的时候可以做 20 个动作的特技表演,五年后,你仍然可以做同样的动作,无论夏天还是冬天,无论晴天还是雨天。电力也非常通用,因为发动机是
orcID:0000-0002-9701-0824 * - 0000-0002-9701-0824 1- 0000-0000-0003-0276-4437 2抽象食品生产已成为与各个国家的关键问题,对于与经济发展的水平持续不断变化,持续的气氛持续潮流。 天。因此,这对粮食生产(农业,水产养殖,肉类和乳制品)具有直接和间接的影响。在西伯利亚(俄罗斯北部)造成严重冰川融化的冰川质量大量质量损失的地区之一。以及气候变化和冰川融化的预计会对该地区的食品和食品生产的可用性产生负面影响。在这项研究中,我们试图引起人们注意俄罗斯北部地区全球变暖对粮食生产的影响。为此,对俄罗斯北部地区观察到了多年的一些气候参数(温度,降水量,雨天,湿度,湿度,1991-2021; Sunshine持续时间,1999 - 2019年)。由于研究的结果,平均温度:5.7 0 c±10.268;最小温度:1.9 0 c±9.412;最高温度:9.0 0 c±11.00;总降水量:678 mm年-1±14.607;湿度:76%±8.039;雨天数量:89天-1±0.831;阳光持续时间:6.3小时一天-1±4.345。在该地区的气候变化和粮食生产的其他研究中,可以说粮食生产受到全球变暖的影响,这种情况显示出越来越多的趋势。关键词:全球变暖,冰川融化,粮食生产,俄罗斯研究文章收到的日期:2024年10月28日接受日期:2024年12月23日引言冰川是大量的冰块,在降雪大于融化时,在降雪大的地区长时间从压实的积雪中产生了大量冰。它们可以在北极地区以及高空山区地区找到。冰川被认为是自然最好的“温度计”之一,因为它们充当录音机和气候变化的敏感指标(Pollack,2010年),并且它们对大多数关键的气候品粉进行整合并反应,例如降水,温度,湿度,浑浊和辐射(Thompson等,2004)。冰块,海冰和冰川的累积量损失是全球变暖对当代地球表面生态系统中冰裂层的相当大影响的结果(Howat and Eddy,2011; Kochtitzky等,2022; 2022; Lindsay et al。俄罗斯的北区,由于其凉爽的气候和冰川的丰富度,它受到冰川融化的影响,包括西伯利亚和俄罗斯北极等地区(Fondahl等,2020; Vorobyeva et al。,2015)。在19世纪中叶,在最近几十年中,与地球的任何其他地区相比,在最近几十年中,气候变化的增长量(评估,2004年)。
印度东北地区(NER)跨越约26.3 mha。 该地区的景观融合了约18.37 MHA的丘陵地形和7.84 MHA的平原。 东北地区(NER)的独特地理展示了各种海拔区域:低空区域占该地区的56%,中高度区域占33%,高海拔地区占其余部分。 雨养农业主要集中在稻米单批次上,覆盖了80%的耕地。 大约有84%的土壤是酸性的,在可用的磷和锌中含量低,但在可用的氮和钾肥中高到中等,使农业生产力更加复杂。 地表水是该地区灌溉的主要来源,导致较低的水效率。 该地区的农业大部分是雨天,在哈里夫季节,许多地区每年通常只经历一个种植周期。 结果,裁剪强度低约131.4%,主要是由于单杂产和生存耕作。 因此,系统多元化为解决这些挑战提供了一种潜在的解决方案,通过减少依赖单批次,增强生态弹性,促进更高的收入并提高该地区的粮食安全。 引入高价值农作物可以提高生产力,而采用诸如作物之类的传统实践印度东北地区(NER)跨越约26.3 mha。该地区的景观融合了约18.37 MHA的丘陵地形和7.84 MHA的平原。东北地区(NER)的独特地理展示了各种海拔区域:低空区域占该地区的56%,中高度区域占33%,高海拔地区占其余部分。雨养农业主要集中在稻米单批次上,覆盖了80%的耕地。大约有84%的土壤是酸性的,在可用的磷和锌中含量低,但在可用的氮和钾肥中高到中等,使农业生产力更加复杂。地表水是该地区灌溉的主要来源,导致较低的水效率。该地区的农业大部分是雨天,在哈里夫季节,许多地区每年通常只经历一个种植周期。结果,裁剪强度低约131.4%,主要是由于单杂产和生存耕作。因此,系统多元化为解决这些挑战提供了一种潜在的解决方案,通过减少依赖单批次,增强生态弹性,促进更高的收入并提高该地区的粮食安全。引入高价值农作物可以提高生产力,而采用诸如作物之类的传统实践
气候变化很可能会增加灌溉用水的需求,因此,如果维持当前的灌溉供应和需求条件,可以降低地中海盆地的水安全。可以通过(1)通过更有效的灌溉技术有效性来减少灌溉用水需求,(2)通过采用新技术进步,(3)转化为雨养农业,以及(4)基于自然的解决方案来增加灌溉水的需求。这项研究的目的是通过分析社会经济发展的对比场景来评估这些适应选择对水安全的不同组合的有效性。我们在西班牙东南部的三种共享社会经济途径(SSP)下,定义了气候变化,土地使用变化和适应措施的合理情景,代表了社会经济发展的不同故事情节。我们考虑了三个SSP方案,包括可持续性途径(SSP1),道路通路中间(SSP2)和化石燃料开发途径(SSP5)。未来的土地利用分布是通过ICLUE土地使用变化模型来获得灌溉用水和供应的差异,从而导致灌溉农业中的差异(SSP1),常数(SSP2)和增加(SSP5)。使用SPHY-MMF水文 - 土壤侵蚀模型对每种情况的影响对一系列水安全指标进行了量化。ssp5显示了对其他水安全指标的中间影响,这是通过年度降水量大大减少来解释的。SSP2场景认为气候变化非常有限,对水安全产生了最严重的影响,包括增加植物水压力,洪水排出,山坡侵蚀和沉积物产量。根据SSP1的,占据了大多数气候变化适应策略,灌溉用水的需求大大减少,因为从灌溉转移到雨水农业以及减少赤字灌溉的实施,而基于自然的解决方案则减少了对其他水安全指标的影响。 在SSP5下,从雨天到灌溉农业的转换会导致灌溉用水需求的显着增加,这可以通过增加淡化的灌溉供水来满足。 这项研究有助于探索不同的未来社会经济途径如何影响水安全,从而支持基于证据的政策发展。,占据了大多数气候变化适应策略,灌溉用水的需求大大减少,因为从灌溉转移到雨水农业以及减少赤字灌溉的实施,而基于自然的解决方案则减少了对其他水安全指标的影响。在SSP5下,从雨天到灌溉农业的转换会导致灌溉用水需求的显着增加,这可以通过增加淡化的灌溉供水来满足。这项研究有助于探索不同的未来社会经济途径如何影响水安全,从而支持基于证据的政策发展。
波动模型 旋转 I 速度 PAR:+ – 40 至 + – 250 节 ASR:+ – 40 至 + – 400 节 仪器覆盖量 PAR 覆盖方位角 30 度;仰角 -1 至 +7 度 高度最小高于地面 100 英尺拦截点范围晴朗模式下 20 海里;降雨模式下 15 海里更新率每秒 1 次 ASR 覆盖方位角 360˚;仰角 0˚ 至 20˚;高度 0 至 8,000 英尺范围晴朗模式下 30 海里;雨天模式下 19 海里 更新率 每 5 秒一次(天线旋转 60 rpm) SSR 覆盖范围 360˚ 范围 60-250 海里,取决于所选询问器 更新率 每 4.8 秒一次(天线旋转 12.5 rpm) 飞机目标处理 PAR 目标 方位角 50 个绘图/扫描;仰角 22 个绘图/扫描 ASR 和 SSR 目标 250 个绘图/扫描 可靠性 MTBCF 2212 小时 可维护性 MTTR 0.25 小时 定期维护每季度一次,2 小时。 天气处理整个雷达覆盖区域,3 个级别
在BA RIA-VUNG TAU省的社会经济发展中,工业发展起着重要作用,包括从废料生产钢和钢钢筋的重工业。目前,在该省,有6家钢铁工厂通过废料生产钢并在我的镇上运营。在生产过程中,尽管工厂安装了废气处理设施,但这种处理尚未有效,导致钢铁工厂的空气污染成为最近受到当地关注的问题之一。该研究计算出空气污染的排放,并使用TAPM-AERMOD模型系统模拟了从钢厂到周围地区的空气污染的分散,其中选择了一个工厂进行案例研究(在Phu My Town)。仿真结果表明,在两个季节(干燥和雨天),最高1小时,24小时或8小时的平均浓度为SO 2,No 2,Co,PM 10和PM 2.5均达到QCVN 05:2023/BTNMT。同时,QCVN 05:2023/btnmt的最高1小时平均TSP浓度超过2.3倍(在旱季)和2.0倍(在雨季)。在废气处理系统问题的情况下,该研究也模拟了。此外,该研究还计算了周围地区的环境安全距离,并提出了减少钢铁工厂空气污染的措施。
瑞典农业中有超过90%的农业是雨天,因此未来的气候变化可能会在未来几十年内对农业生产构成风险。预计北欧的年度降水总体增加,但瑞典仍可能面临灌溉的需求,如2018年夏季的干旱所示。因此,应考虑瑞典农业的适应包括灌溉农业。为了评估灌溉的理论需求,对瑞典的不同位置以及每个位置的不同土壤作品对进行了计算。由瑞典气象和水文研究所创建的预计气候数据集的原位天气数据用于评估1981 - 2050年期间灌溉需求的变化。结果表明,在季节初(5月至6月),越来越多的谷物作物灌溉,其主要原因是:i)转移到裁切期的较早开始,导致早期灌溉的需求; ii)春季干燥的天气的可能性更高,大大增加了干燥年份的灌溉要求。生长季节以后开始的农作物(例如,马铃薯)在7月份对灌溉的需求越来越多。作物发育阶段会较早地发生,导致较早的收获,从而减少了八月的灌溉要求。但是,本研究开发的计算方法可能低估了对灌溉的需求,这可能比此处报道的要高。
摘要:气候变化显着威胁着粮食安全和农业经济,特别是在雨天条件下。本研究使用农业技术转移的决策支持系统(DSSAT)作物仿真模型来评估堪萨斯州东部河流盆地(EKSRB)在两个预计的气候场景(RCP 4.5和RCP 8.5)下,玉米和大豆在2006年到2099年至2099年的未来适合性。通过比较基线(1990- 2019年)和未来的气候,采用了收益差距百分比方法来量化实际产量和潜在产量之间的差异。这种创新的方法整合了18个全球气候模型(GCM)的空间土壤变异性和高级气候预测,从而提高了作物适合评估的准确性。结果表明,玉米的收益率损失范围从23%到57%,大豆的收益率损失为20%至36%,玉米的产量差距比大豆差异更大,在未来的气候条件下强调了大豆的弹性。该研究确定了最需要自适应策略的EKSRB内的关键区域,并为决策者提供了建立有针对性的农业策略的见解,促进政策计划,并为弱势领域选择缓解策略。这项研究强调了自适应农业实践确保粮食安全和可持续性的必要性,提供了一个可靠的框架,可以在全球范围内适应类似地区。
葡萄牙大陆的气候分为两个区域:一个地区有温带气候,冬季和炎热干燥的夏天(CSA-热夏 - 夏季地中海气候),另一个是温带气候,有雨天的气候,雨天和热冬季,干燥,干燥,干燥,干燥,温暖,温暖的 - 塞米尔·梅尔·梅尔·梅里诺(CSB -Hearm Mediterrerranean Climate Climate)。与大西洋和地中海的接近性强烈影响葡萄牙大陆的气候。尽管最多的内陆地区距离海岸仅约220公里,但有些地区受伊比利亚半岛的大陆质量的影响,这给他们带来的降雨量较少(葡萄牙是一个平均降雨量为900毫米)的国家,年温度范围比海岸地区更大。地中海的影响在夏季,南部和东部尤其重要,导致高温和低降雨,以这种方式导致荒漠化过程。在全球大气和海洋循环的背景下,亚速尔群岛群岛的一般气候条件是由其地理状况决定的,以及周围巨大的水质量的影响,由低温范围,高降雨量,相对湿度和持久风能反映出来。马德拉群岛群岛位于地理区域位于亚热带地区,在冬季和夏季呈现温和的气候,除了观察到较低温度的较高地区。
iv。参考文献[1] A.K.Srivastava,Shyam Singh&R。A. Marathe(2002)有机柑橘:土壤肥力和植物营养,《可持续农业杂志》,19:3,5-29。[2] Anil Kumar,C.H。Bhanu Prakash,Navjot Singh Brar和Balwinder Kumar。Vermicompost在不同农作物系统中的可持续作物生产和土壤健康改善的潜力。int。J.Curr。 微生物。 应用。 SCI(2018)7(10):1042-1055。 [3] Arsaln,M.,S。Sarwar,R。Latif,J.N。 Chauhdary,M。Yousra和S. Ahmad。 2020。 ver虫和微生物接种剂对雨养雨天条件下小麦的产量,土壤肥力和经济学的影响。 巴基斯坦农业研究杂志,33(4):858-865。 [4] D.R. Chaudhary,S.C。Bhandari•和L.M. Shukla。 Vermicompost在可持续农业中的作用 - 评论。 Arigric。 修订版,25(1):29-39,2004。 [5] Virendra Kumar Singh博士。 ver塑料对农业系统中作物植物的土壤生育能力和生长属性的影响。 国际工程和应用科学高级研究杂志。 卷。 10。 编号 5。 2021年5月。 [6] Edwards,C.A。 (1995)。 Biocycle,36(6)。 [7] Puneeta Dandotiya和O. P. Agrawal。 简单的方法,可以通过ver塑料改善土壤生育能力。 10月 jour。 env。 res。 卷。 2(2):139-147。J.Curr。微生物。应用。SCI(2018)7(10):1042-1055。 [3] Arsaln,M.,S。Sarwar,R。Latif,J.N。 Chauhdary,M。Yousra和S. Ahmad。 2020。 ver虫和微生物接种剂对雨养雨天条件下小麦的产量,土壤肥力和经济学的影响。 巴基斯坦农业研究杂志,33(4):858-865。 [4] D.R. Chaudhary,S.C。Bhandari•和L.M. Shukla。 Vermicompost在可持续农业中的作用 - 评论。 Arigric。 修订版,25(1):29-39,2004。 [5] Virendra Kumar Singh博士。 ver塑料对农业系统中作物植物的土壤生育能力和生长属性的影响。 国际工程和应用科学高级研究杂志。 卷。 10。 编号 5。 2021年5月。 [6] Edwards,C.A。 (1995)。 Biocycle,36(6)。 [7] Puneeta Dandotiya和O. P. Agrawal。 简单的方法,可以通过ver塑料改善土壤生育能力。 10月 jour。 env。 res。 卷。 2(2):139-147。SCI(2018)7(10):1042-1055。[3] Arsaln,M.,S。Sarwar,R。Latif,J.N。Chauhdary,M。Yousra和S. Ahmad。2020。ver虫和微生物接种剂对雨养雨天条件下小麦的产量,土壤肥力和经济学的影响。巴基斯坦农业研究杂志,33(4):858-865。 [4] D.R. Chaudhary,S.C。Bhandari•和L.M. Shukla。 Vermicompost在可持续农业中的作用 - 评论。 Arigric。 修订版,25(1):29-39,2004。 [5] Virendra Kumar Singh博士。 ver塑料对农业系统中作物植物的土壤生育能力和生长属性的影响。 国际工程和应用科学高级研究杂志。 卷。 10。 编号 5。 2021年5月。 [6] Edwards,C.A。 (1995)。 Biocycle,36(6)。 [7] Puneeta Dandotiya和O. P. Agrawal。 简单的方法,可以通过ver塑料改善土壤生育能力。 10月 jour。 env。 res。 卷。 2(2):139-147。巴基斯坦农业研究杂志,33(4):858-865。[4] D.R.Chaudhary,S.C。Bhandari•和L.M.Shukla。 Vermicompost在可持续农业中的作用 - 评论。 Arigric。 修订版,25(1):29-39,2004。 [5] Virendra Kumar Singh博士。 ver塑料对农业系统中作物植物的土壤生育能力和生长属性的影响。 国际工程和应用科学高级研究杂志。 卷。 10。 编号 5。 2021年5月。 [6] Edwards,C.A。 (1995)。 Biocycle,36(6)。 [7] Puneeta Dandotiya和O. P. Agrawal。 简单的方法,可以通过ver塑料改善土壤生育能力。 10月 jour。 env。 res。 卷。 2(2):139-147。Shukla。Vermicompost在可持续农业中的作用 - 评论。Arigric。修订版,25(1):29-39,2004。[5] Virendra Kumar Singh博士。ver塑料对农业系统中作物植物的土壤生育能力和生长属性的影响。国际工程和应用科学高级研究杂志。卷。10。编号5。2021年5月。[6] Edwards,C.A。 (1995)。 Biocycle,36(6)。 [7] Puneeta Dandotiya和O. P. Agrawal。 简单的方法,可以通过ver塑料改善土壤生育能力。 10月 jour。 env。 res。 卷。 2(2):139-147。[6] Edwards,C.A。(1995)。Biocycle,36(6)。[7] Puneeta Dandotiya和O. P. Agrawal。简单的方法,可以通过ver塑料改善土壤生育能力。10月jour。env。res。卷。2(2):139-147。[8] S. Manivannan,M。Balamurugan,K。Parthasarathi,G。Gunasekaran和L.S.Ranganathan。 Vermicompost对土壤生育能力和作物生产率的影响 - 豆类(叶状球)。 J. Environ。 生物。 30(2),275-281(2009)。 [9] Sriramulu Ananthakrishnasamy。 ver塑料和无机肥料对番茄作物生产率(番茄酱)和土壤肥力的影响。 国际药学和生物科学杂志 - ijpbstm(2019)9(4):432-441。Ranganathan。Vermicompost对土壤生育能力和作物生产率的影响 - 豆类(叶状球)。J. Environ。生物。30(2),275-281(2009)。[9] Sriramulu Ananthakrishnasamy。ver塑料和无机肥料对番茄作物生产率(番茄酱)和土壤肥力的影响。国际药学和生物科学杂志 - ijpbstm(2019)9(4):432-441。