摘要。这些年来,工业进步带来了快速、高质量的生产。尽管取得了这些进步,但与此类生产相关的影响,无论是社会影响、经济影响还是环境影响,有时都没有得到广泛的研究。该行业意识到了更环保的方法的重要性,因此,出现了新的可持续技术,如增材制造 (AM)。为了概括 AM 相对于传统制造的环境效益,使用了生命周期评估 (LCA) 等方法。拟议的工作旨在了解和量化与用于制造金属零件的特定 AM 技术(电弧增材制造 (WAAM))相关的环境影响。进行了 LCA,并考虑了相同情况,分析了与生产 3 种不同金属零件相关的环境影响。为了了解获得的结果,同样考虑了也用于制造金属零件的计算机数控 (CNC) 铣削。在这个特定的应用中,与 CNC 铣削相比,WAAM 对环境的影响被证实为 12%-47%,具体取决于所考虑的几何形状。这两种工艺确定的环境热点都是原材料的生产。
摘要 增材制造 (AM) 是一种成熟的制造技术,它允许更大的设计自由度。在现有的七种 AM 工艺中,由于每种制造工艺的物理特性不同,我们观察到打印部件中存在各种缺陷。如果没有清晰的几何-工艺-缺陷深度相互作用的概述,这种各种各样的缺陷会使设计步骤变得复杂。这些缺陷可能是基于工艺或机器的,其分类通常会引发方法和术语问题。本文建议使用基于工艺的方法回顾 AM 一般部件缺陷。本文的目的是为设计师提供一种分类,通过考虑所选工艺,通过评估影响最终部件的不同缺陷,让他们能够在部件设计中做出选择。对于 ISO/ASTM 52900 中定义的每个工艺类别,都会审查零件的主要属性和缺陷,并将其分为四类:几何形状和尺寸、表面质量、微观结构和机械性能。本审查特别关注影响缺陷和属性的工艺参数,以便设计师根据工艺或零件的预期要求做出相关选择。
在生产过程中应用数字孪生概念支持制造具有最佳几何质量的产品。这一概念可以通过寻找各个零件的最佳组合以最大化最终产品的几何质量的策略得到进一步支持,该策略称为选择性装配技术。然而,这种技术的应用仅限于最终尺寸仅取决于配合零件尺寸的装配,这不适用于钣金装配。本文开发了一种用于钣金装配的选择性装配技术,并研究了批量大小对改进的影响。所提出的方法利用变化模拟工具(计算机辅助公差工具)和优化算法来找到配合零件的最佳组合。所提出的方法应用于三个钣金装配工业案例。结果表明,使用这种技术可以大大减少此类组件的最终几何变化和平均偏差。此外,增加批次大小会减少可实现的变化改进量,但会增加可实现的平均偏差改进量。
需要更换零件的损坏:当存在以下一种或多种情况时,考虑更换整个零件。• 复杂部件外部损坏时• 周围结构或可达性使维修不切实际时。• 损坏的部件相对容易更换时• 完好无损且配件损坏超出限度可以忽略不计时。钣金修复的基本原则:
XF510r 系列可实现雕刻深度和视觉质量。加工参数可调节,以获得最佳效果:速度、分辨率、力度和定位。无论是在塑料上进行浅色标记还是在不锈钢上进行深度雕刻,都可以轻松实现,而不会影响零件的完整性。可以对金属进行喷漆或喷砂等后处理,同时雕刻仍然可见。
亲爱的学生,请阅读B. Sc的计划指南中的作业部分。我们在入学后寄给您。30%的权重已被指定用于连续评估,这将由本课程的一个导师标记的任务组成。作业在这本小册子中,由两个部分组成。所有零件的总数均为100,其中需要35%以通过它。
[ 直流控制器是一种微电子混合设备。采用了 MIL-HDBK-217B 通知 2《电子设备可靠性预测》第 2.1.7 节中的混合故障率预测模型和程序。这种预测方法需要识别单个电子零件和基板,以及每个零件的单独电应力数据。热应力是由混合封装温度和零件功率耗散引起的。
•此外,高度穿透离子允许在一次曝光中背靠背放置的多个板进行测试。通过将降解器定位在板之间,可以获得不同的莱特,并且可以在一个或两个梁暴露中表征多个零件的样本。此方法减少了光束的使用时间,并使重离子测量在NSRL
• 所有内部机械人工、车间主管人工和用于维护车辆的零件的成本;以及 • 外部人工和用于维护车辆的零件的成本。要计算每英里的成本,请将报告期间发生的所有成本加起来,然后将该数字除以同一报告期间行驶的总英里数。 工作地点:机构书面指定的员工通常履行职责的地点。 员工:州政府雇用的任何从事州业务的人,州政府为他们预扣所得税、提供工伤补偿保险并支付工伤补偿小时税。根据此定义,临时就业服务机构提供的工人和惩教署囚犯不是员工。 电动车:带有可充电电池的电动车 (EV),车轮由电动机驱动;插电式混合动力电动车 (PHEV),带有可充电电池/电动机与内燃机相结合为车辆提供动力。另请参阅零排放汽车。 电动车充电站:任何提供电力为电动车充电的设备。包括机构允许员工或公众用于给电动汽车充电的电源插座以及安装的充电设备,例如:
在过去十年中,增材制造业(AM)引起了各种行业的极大关注,这从近年来AM销售的急剧增长中可以明显看出(Wohlers报告,2020年)。am可以通过零件的一层制造很容易产生复杂的形状;因此,AM对金属的适用性是一个重要的问题,尤其是随着航空航天行业对复杂零件的需求的增加。根据ASTM International(ASTM International,2012年),AM分为七种类型,但指示能量沉积(DED)是用于金属制造中应用的合适候选者。DED可以通过同时向底板上提供热能和材料来有效地制造大规模的复合产物。使用高功率热源可以轻松提高制造效率并提供大量材料;但是,很难在做出的零件中实现质量增强,例如形状的准确性和密度增强。密度增强是DED的重大挑战,因为沉积物内的残留孔会引起应力浓度,从而降低了其机械强度。因此,通过修改制造条件,由于剩余孔的残留孔而试图解决低机械强度的问题(Fayazfara等,2018; Zhonga等,2015),并分析