摘要。随着越来越多的企业资产移动到云环境,基于传统的外围安全体系结构的能力正在迅速降低。从安全角度来看,零信任框架可以更好地跟踪和阻止外部攻击者,同时限制云范式内部攻击而导致的安全漏洞。此外,零信任可以更好地完成跨云环境的用户和设备的访问权限,以实现资源的安全共享。此外,云计算中零信任体系结构的概念需要在系统体系结构多层上集成复杂实践,以及各种现有技术的结合。本文着重于身份验证机制,信任评分的计算以及生成政策,以建立对资源的访问控制。主要目标是将无偏信的信任评分纳入政策表达的一部分,同时保留感兴趣的参数的可配置性和适应性。最后,在微云平台解决方案上展示了概念证明。
摘要 - 在经典的损失源编码问题中,一个编码长的源符号块,使扭曲能够接近最终的香农限制。这种块编码方法引入了较大的延迟,这在许多延迟敏感的应用中是不可取的。我们考虑零延迟情况,其中的目标是在没有任何延迟的情况下编码和解码有限的Alphabet Markov源。已经表明,这个问题将自己适合随机控制技术,从而导致存在,结构和一般的结构近似结果。但是,到目前为止,这些技术仅导致了代码设计的计算算法实现。为了解决这个问题,我们提出了一种可实现的强化学习设计算法,并严格证明其渐近最佳性。特别是,我们表明可以使用量化的Q学习算法来获得此问题的近乎最佳的编码策略。证明是基于量化Q学习的最新结果的基础,该Q学习是针对弱伙伴控制的马尔可夫链,其应用需要开发有关规律性和稳定性属性的技术结果,并将最佳解决方案与折扣和平均成本无限的地平线标准问题联系起来。这些理论结果由模拟支持。
家庭行动 家庭可以塑造未来 - 2024-2029 年组织战略 关于家庭行动 我们的使命 家庭行动帮助人们度过变革、挑战或危机。这是我们 150 多年来一直在做的事情。我们保护儿童、支持年轻人和成年人,并为家庭和社区提供直接、切实的帮助。我们亲眼目睹了家庭塑造生活的力量,无论好坏,因此我们在国家和地方政策制定中强调家庭的重要性,扩大家庭的声音,代表当今英国家庭不断变化的需求。我们的愿景和精神 在家庭行动,我们的愿景是建立一个理解家庭作为个人未来和互联、有韧性的社区的基础的重要性和力量的社会。因为家庭是个人和社会拥有积极未来的关键:无论是认识到家庭网络和当前支持的价值,还是了解过去创伤的影响,了解家庭在每个年龄段塑造未来的力量都至关重要。我们亲身了解到,我们早期的家庭经历无论好坏都会伴随着我们。这就是为什么我们在整个生命周期中与各个年龄段的人一起工作,以便我们保护今天的孩子,保障明天的未来,并支持现在正在经历困难时期的人们。我们相信,我们面前的道路与我们的过去息息相关,所以改变永远不会太早,也永远不会太晚。尽早干预是保护儿童和促进其发展的关键。爱情和经历,无论好坏,都会在幼儿时期极大地塑造我们的大脑,但这个过程不会在五岁后停止。我们一生中都有能力改变,家庭的力量贯穿我们的一生。我们相信组成一个家庭的方式有很多种——关系才是最重要的。家庭应该是安全和支持的,充满爱和保护的——除此之外,没有关于家庭“应该”是什么样子的蓝图。过去,太多人因为关于组成一个家庭的“正确”方式的破坏性观念而受到严重伤害。每个人都应该享有尊严、尊重和平等的生存机会。在家庭行动中,我们相信任何人都不应该感到被遗忘或被抛弃。这就是为什么我们要与人们一起经历各种变化、挑战和危机,并与我们社会中最脆弱的群体合作:那些处于或经历过国家“护理”系统的人、那些家庭经历创伤和痛苦的人,以及生活在贫困或接近贫困的家庭。我们的价值观 我们在人们生命中最脆弱的时刻为他们提供支持,并投资于一种价值观驱动的文化,力求确保我们以敏感和尊重的态度做到这一点,并切实关注减少不平等、解决贫困和提高复原力。我们的价值观是我们的核心。我们是一个积极进取的组织,我们追求卓越,我们保持明确的以人为本,我们相互尊重为我们工作的每个人。我们根据这些价值观招聘员工,根据这些价值观评估我们的员工,确保我们的实践不断受到这些价值观的影响,并根据这些价值观衡量我们的影响。
基于模型的增强学习(MBRL)是一种获得控制策略的样本有效技术,但不可避免的建模误差通常会导致性能恶化。MBRL中的模型通常仅用于重建动态,尤其是状态观察,而模型误差对策略的影响并未由培训目标捕获。这导致MBRL的目标目标之间的不匹配,实现良好的政策和价值学习,以及实践中采用的损失函数的目标,未来的国家预测。天真的直觉表明,价值感知的模型学习将解决这个问题,实际上,已经基于理论分析提出了针对该客观不匹配问题的第二种解决方案。但是,在实践中,它们往往不如通常使用的最大可能性(MLE)方法。在本文中,我们提出了价值梯度加权模型损失(VAGRAM),这是一种新颖的价值模型学习方法,可改善MBRL在具有挑战性的环境中的性能,例如小型模型容量和分散注意力的状态尺寸。我们分析了MLE和值感知的方法,并演示了他们如何在学习价值吸引模型时无法解释样本覆盖范围和功能近似的行为。fom,我们强调了在深度学习环境中稳定优化的其他目标。为了实现这一目标,我们利用经验值函数的梯度作为对RL算法对模型误差的敏感性的量度。我们通过表明我们的损失函数能够在Mujoco基准套件上获得高回报来验证我们的分析,同时比基于最大似然的方法更健壮。
本文提出了一个新的算法追索(AR)框架,即使在缺少值的情况下也可以工作。AR旨在提供一个追索行动,以改变分类器给定的不需要的预测结果。现有的AR方法假设我们可以访问有关输入实例功能的完整信息。但是,我们经常在给定实例中遇到缺失值(例如,由于隐私问题),以前的研究没有讨论这种实际情况。在本文中,我们首先从经验和理论上表明了一种具有单一插补技术的天真方法无法获得有关其有效性,成本和特征要改变的良好动作的风险。为了减轻这种风险,我们通过纳入多个插补的想法来制定为给定的不完整实例获得有效和低成本动作的任务。然后,我们提供了一些关于任务的理论分析,并提出了基于混合企业线性优化的实用解决方案。实验结果证明了与基准相比,我们方法在缺少值的情况下的功效。
是这个过程,人们看到有必要以知识库为基础创建文档(知识库),该过程可以由有兴趣使用测试环境的实体从SINPE操作中心请求。 div>应考虑到本文档定义技术咨询,这些咨询是针对使用.NET框架并在基本.NEC .NEC(vb.net(vb.net)编程语言中执行其发展的程序员)的。 div>这些技术响应是关于如何完成的建议,因此不应将其视为遵循的唯一方法。 div>