AFOLU 农业、林业和其他土地利用 AFS 农林业系统 AFSP 粮食安全溢价 AP 农业产量 BAU 一切照旧 BRT 快速公交系统 C 碳 cm 厘米 CO 一氧化碳 CO 2 二氧化碳 CO 2e 二氧化碳当量 COP 21 第 21 届缔约方会议,巴黎 2015 年 CRF 控释肥料 CSP 聚光太阳能发电 EJ 艾焦耳 ENSO 厄尔尼诺-南方涛动 E&M 建立和维护 EU 欧盟 FIT 上网电价 G7 七国集团 GACMO 温室气体减排成本模型 GDP 国内生产总值 GHG 温室气体 GtC 十亿吨碳 GtCO 2e 十亿吨二氧化碳当量 GW 十亿瓦/公顷 IPCC 政府间气候变化专门委员会 kWh 千瓦时 LAC 拉丁美洲和加勒比地区,墨西哥
范围3排放的套件。减少来源的排放量是大学的最高优先级,但仍然认识到,偏移将是ANU短期气候野心的基本过渡机制。因此,预测表明,在2025年至2029年之间,ANU需要抵消相当于200,000的CO2,以完全是碳中性的。然而,迄今为止,ANU尚未制定明确而结构化的策略来抵消其累积的短期排放。本报告使用定性分析来研究ANU的几种短期抵消策略的生存能力,以识别和对比净零排放的潜在方法。结果建议,零以下的ANU与澳大利亚NRM地区达成碳购买协议,以抵消短期(2025-2029)的ANU残留温室气体排放。虽然考虑和讨论了一系列选项,但这种采购协议的这种形式保证了其碳抵消投资组合的多功能性,控制和风险管理。此外,该分析讨论了这种伙伴关系的含义,并指出了ANU追求这种性质的碳购买协议的能力。
零能源建设电力 - 热热双层能量优化控制方法Kong Lingguo 1,Wang Shibo 1,Cai Guowei 1,Liu Chuang 1,Guo Xiaoqiang 2
Product CF Report on low-carbon agricultural and rural development in China (2023) 中国农业农村低 碳发展报告
必须做出开创性的努力来减轻气候变化日益增加的影响。在发明先进的清洁能源技术的同时,更根本的是重新思考在单一设施内设计能源系统,并将其作为一个区域共同运作。设施不应仅仅通过消费而持续被动;需要转变以更具动态地运行。在多建筑规模上设计零能耗和零碳可以发现建筑节能、脱碳、需求灵活性和弹性的机会,而这些机会在单个建筑规模上是无法获得的。如果没有创新工具来评估众多可能性,这种方法可能会具有挑战性。作为一项调查结果,我们重点介绍了使用校园规模的能源建模平台 URBANopt™ 来扩建位于科罗拉多州戈尔登的国家可再生能源实验室 (NREL) 南桌山校区。项目增长包括设计三座新的全电动、零能耗和零碳混合用途建筑(研究实验室和办公空间的组合)。这项调查对于 NREL 实现其运营足迹的净零排放至关重要,这将在未来十年分阶段实现。利用 URBANopt 的功能,我们评估了 1) 高性能建筑节能和脱碳措施、2) 第四代区域供热和制冷 (4 th GDHC) 系统、3) 优化的现场发电和储能资产,以最低的生命周期成本实现零能耗和零碳目标,以及 4) 成本最优的分布式能源技术组合、调度策略和相关容量,以提高电网中断的弹性。这项工作通过多建筑规模的真实案例研究展示了 URBANopt 的用途和功能,揭示了零能耗和零碳目标的挑战和机遇,并提供了未来设计师在追求脱碳建筑环境时可以考虑的关键策略。
保持我们的排放量降低净零碳排放,主要涉及将温室气体(GHG)排放降至最低。第一步是减少范围1排放,与建筑物和车辆燃料消耗相关的直接温室气体排放。第二个是减少与购买网络和建筑物购买电力相关的间接温室气体排放量的范围。Orange已经启动了计划,以增加我们从可再生能源(包括风能,太阳能和水力发电)产生的电力供应。解决范围3的排放量也很重要,即使它们超出了公司的直接控制,并且所涉及的方法尚未完全成熟。此范围涵盖了与供应商,员工通勤和商务旅行以及与客户使用相关的下游排放相关的所有上游排放。范围3可以通过优化购买原材料,产品和服务,限制商务旅行和员工通勤,将生态设计原则应用于产品和服务,并更有效地管理废物,从而减少3排放。