此外,通过实施新的关键要素和绩效要求,“确保[SES官员对总统和美国人民都适当责任的新绩效标准。这些新的关键要素和绩效要求评估了高级高级主管是否忠实地管理法律和总统的政策;高级主管是否维持建立原则,包括法律规定的平等和民主自治;高级主管是否表现出与总统的具体政策议程相吻合并提高与之保持一致的具体结果;以及高级主管和高级高管机构在评估总统管理议程,代理商战略计划,国会预算合理/年度绩效计划以及其他组织计划文件时的可衡量结果。
在不同类型的电池中,锂离子电池因其性能和安全特性而成为最受欢迎的类型。需要电池管理系统来从这种电池中获得便捷的性能并尽可能延长电池的使用寿命。因此,良好的电池管理系统需要一个准确的电池模型。在本研究中,以代表开路电压变化的新一代汽车合作伙伴 (PNGV) 等效电路电池模型为基础,并基于 PNGV 等效电路电池模型创建分数阶电池模型。创建电池模型后,最重要的主题之一是模型参数的确定。在此阶段,为了简化问题,使用分层方法将测量的电池数据集划分为子层,并通过对每个子层进行分析和数据提取来确定参数,以反映不同的充电状态水平。这种方法有助于获得准确的电池模型,在每个电流脉冲期间,稳态误差小于 5 mV,瞬态误差小于 30 mV。
Healthcare 4.0是一个异质环境,许多智能医疗设备都可以连接以提供及时的医疗服务。作为下一代医疗保健4.0,可以在多个设备和通信技术上进行更多数字化和相互联系的服务,因此潜在攻击的可能性也大大扩展。关键医疗保健涉及高度敏感的患者数据,必须满足严格的监管要求。因此,合并零信任体系结构(ZTA)至关重要,以提供一个可靠的框架,以确保安全和保障防止不断发展的威胁。这项工作提出了一个框架,该框架可利用Healthcare 4.0的基于ZTA的连续轻质相互验证策略,以完成设备,边缘和云服务器之间的安全数据传输。这是一种灵活且轻巧的身份验证策略,它考虑了Healthcare 4.0中的所有实体,不受信任,并在每次会议期间都可以连续身份验证,以确保针对各种漏洞的高安全性。基于两个不同级别的连续和相互认证是在两个不同的级别上完成的。首先,基于动态哈希的消息身份验证代码(HMAC)的连续相互轻量级身份验证被利用了两种不同的传输,这些传输是设备到设备(D2D)和设备对边缘(D2E)。此外,该框架以三种方式分析其效率:基于Scyther-Tools的安全性分析,理论分析和基于仿真的分析。因此,它在安全性和资源消耗之间取得了更好的权衡,而不是资源受限的医疗保健4.0 Devicessecond,该框架采用了椭圆曲线加密加密标准(ECC-AES)基于重量的重量身份认证和基于身份的重量身份验证和基于基于身份的访问控制(IBAC)来启用Edge Control in Edge Control in Edge Condor to Cloud Server(E2C)。此外,基于Contiki/Cooja的模拟证明,所提出的框架是医疗保健4.0环境中各种D2D和D2E身份验证协议中的强大竞争者。
这项研究的目的是建立曲线下的零级紫外线光谱学 - 吸光度和零订单区域(AUC)方法(AUC)方法,用于估算大量和药物剂型的多x基胺琥珀酸酯。多克利胺琥珀酸酯是具有明显镇静特性的组胺H1拮抗剂。它用于过敏和抗精性,抗气和催眠。多克利胺也已在兽医应用中施用,以前用于帕金森氏症,蒸馏水被用作溶剂溶解毒胺琥珀酸酯的溶解度。当溶解在蒸馏水中时,发现多克利胺琥珀酸酯的最大吸收在波长260nm处。这些方法基于在260nm处的吸光度测量和曲线下面积的整合,以分析251.20-267.20 nm的波长范围内的多x胺琥珀酸酯。在10-60 µg/ml的浓度范围内,与相关系数r 2> 0.99的浓度范围保持线性。根据ICH指南,对所提出的方法进行了准确性(恢复%),精度,可重复性和坚固性的验证。提出的方法用于定性和片剂中多克莱明琥珀酸酯的定量估计,结果与所声称的标签非常吻合。开发的方法可用于散装和药剂片的多x基胺的常规分析。
摘要 - dysarthria是一种运动语音障碍,通常与脑瘫,帕金森氏病,肌萎缩性侧面硬化症和中风有关。患有构音障碍的人通常会出现严重的语音困难,包括不精确的表达,缺乏流利性,言语缓慢以及量减少和清晰度,这可能会阻碍他们与他人有效沟通的能力。我们提出了一种两级语音转换方法,以增强违反语音的重建。在第一阶段,我们基于相同的性别回应策略开发了一种KNN-VC方法,以预先修复质心语音。在此阶段,我们仅将违反语音与同一性别的正常语音相匹配。在第二阶段,我们适应了So-Vits-SVC来恢复扬声器的音色,并提高了第一阶段修复的演讲的声音质量。在低资源构件构想唤醒单词斑点挑战(LRDWWS挑战)的数据集中进行了客观和主观评估,这表明,所提出的方法可以在说话者的相似性,语音清晰度和不知名的扬声器方面取得一些改善,这些评估也表明我们的方法还表明我们的方法具有良好的零料性能。我们的音频样本可以在线访问1。索引术语 - dysarthric语音重建,任何一对零射,语音转换
I. 引言 随着微电子技术和计算能力的不断进步,新一代无线技术的涌现使几代人之前看似未来主义的用例成为可能 [1]。然而,在这些新技术成为商业现实之前,需要彻底评估和评估它们的性能,并且必须充分了解与其性能扩展规律和操作限制相关的见解。深入研究通信理论基础,不可否认的是,渐近分析几十年来一直是评估系统性能的非常有用的工具 [2]。里程碑式的工作 [3] 为无线通信系统的渐近性能分析奠定了基础。在与信噪比 (SNR) 的概率密度函数 (PDF) 的平滑度相关的合理温和条件下,当平均 SNR γ 足够大时,错误概率度量可以表示为 P op ≈ α ( γ th /γ ) b ,其中 γ th 是给定性能所需的阈值 SNR 值。编码增益或功率偏移(由 α 捕获)和分集阶(DO,由 b 捕获)的概念在无线文献中无处不在,作为表征性能缩放定律的一种方式:通过将平均 SNR 增加一定量,我们可以获得多少性能提升?直到今天,Wang 和 Giannakis 的幂律
本研究通过开发分数阶模型,提出了一种解决异质性肺癌动力学复杂性的新方法。该模型专注于联合疗法的优化,将免疫疗法和靶向疗法结合起来,以最大限度地减少副作用为具体目标。值得注意的是,我们的方法巧妙地融合了比例-积分-微分 (PID) 反馈控制和优化过程。与以前的研究不同,我们的模型结合了考虑常规癌细胞和突变癌细胞之间相互作用的基本方程,描述了免疫细胞和突变癌细胞之间的动态,增强了免疫细胞的细胞毒性活性,并阐明了基因突变对癌细胞扩散的影响。这个改进的模型提供了对肺癌进展的全面了解,为制定个性化和有效的治疗策略提供了宝贵的工具。研究结果强调了优化的治疗策略在实现关键治疗目标方面的潜力,包括原发性肿瘤控制、转移限制、免疫反应增强和控制基因突变。该治疗方法的动态和适应性,加上经济考虑和记忆效应,使该研究处于精准和个性化癌症治疗的前沿。
摘要:我们表明,量子极值表面 (QES) 处方的简单应用会导致矛盾的结果,必须在领先阶上进行校正。当存在第二个 QES(领先阶的广义熵严格大于最小 QES)并且两个表面之间存在大量高度不可压缩的体积熵时,就会出现校正。我们将校正的来源追溯到 QES 处方的复制技巧推导中使用的假设失败,并表明更仔细的推导可以正确计算校正。使用一次性量子香农理论(平滑最小和最大熵)的工具,我们将这些结果推广到一组确定 QES 处方是否成立的精炼条件。我们发现了对纠缠楔重构(EWR)所需条件的类似改进,并展示了如何将 EWR 重新解释为一次性量子态合并(使用零位而不是经典位)的任务,重力能够以最佳效率实现这项任务。
这项研究的目的是建立曲线下的零级紫外线光谱学 - 吸光度和零订单区域(AUC)方法(AUC)方法,用于估计散装和阴道胶囊中硝酸硝酸盐的估计。芬太纳唑硝酸盐是一种抗真菌药物,它完全不溶于水。甲醇用作溶剂溶解芬太纳唑硝酸盐的溶解度。溶解在甲醇中时,发现硝酸芬太纳唑的最大吸收在波长253 nm处。这些方法基于在253nm处的吸光度测量和曲线下面积的整合,以分析242-262 nm波长范围内的芬康唑硝酸盐。在两种方法的相关系数r 2> 0.99的5-30 µg/ml浓度范围内,药物遵循线性。根据ICH指南,对所提出的方法进行了准确性(恢复%),精度,可重复性和坚固性的验证。将所提出的方法用于阴道胶囊中硝酸硝酸盐的定性和定量估计,结果与所声称的标签非常吻合。开发的方法可用于散装和阴道胶囊中硝酸盐的常规分析。