稳压电源和非稳压电源均可用于为驱动器供电。然而,非稳压电源由于其耐受电流浪涌的能力而更受青睐。如果确实使用了稳压电源(如大多数开关电源),则重要的是具有较大的电流输出额定值以避免诸如电流钳位之类的问题,例如使用 4A 电源为 3A 电机驱动器运行。另一方面,如果使用非稳压电源,则可以使用电流额定值低于电机电流的电源(通常为电机电流的 50% ~ 70%)。原因是驱动器仅在 PWM 周期的开启期间从非稳压电源的电源电容器吸取电流,而在关闭期间则不会。因此,从电源中吸取的平均电流远小于电机电流。例如,一个 4A 额定电源可以为两个 3A 电机充分供电。
γ-谷氨酰转肽酶 (GGT,EC 2.3.2.2) 催化谷胱甘肽及其 S-结合物的水解和转肽作用,通过谷胱甘肽代谢参与多种生理和病理过程,是一个极具潜力的药物靶点。本文报道了一种基于膦酸酯的不可逆抑制剂 2-氨基-4-{[3-(羧甲基)苯氧基](甲酰基)磷酰基}丁酸 (GGsTop) 及其类似物作为人 GGT 的机制抑制剂的评估结果。GGsTop 是一种稳定的化合物,但其对人 GGT 酶的失活速度显著快于其他膦酸酯,并且重要的是,它不抑制谷氨酰胺酰胺转移酶。构效关系、与大肠杆菌GGT的X射线晶体学分析、序列比对和人GGT的定点诱变表明,GGsTop的末端羧酸盐与人GGT活性位点残基Lys562之间存在关键的静电相互作用,从而实现强效抑制。GGsTop在浓度高达1mM时对人成纤维细胞和肝星状细胞无细胞毒性。GGsTop是一种无毒、选择性强效不可逆的GGT抑制剂,可用于各种体内和体外生化研究。
2024 年 2 月 14 日 — 雷神微电子研究实验室。362 Lowell St.,安多弗,马萨诸塞州 01810。摘要。GaAs 赝晶高电子迁移率晶体管 (PHEMT)...
业界渴望采用新技术并实现其预期效益,但很难证明对未经证实的技术进行风险投资是合理的。在航空航天和国防工业的背景下,新技术除了与传统系统兼容外,还必须满足严格的安全标准。本论文定义了一个成功开发和实施增强现实技术的协作框架,包括确定用例、定义需求和评估现有商用现成解决方案的过程。本论文应用案例研究旨在支持雷神技术公司 - 雷神导弹与防御公司的战略发展。目标包括技术选择和开发流程的提案,以使增强现实功能能够用于现场产品的操作和维护,并利用这些功能进行其他应用。
在UTA教职员工和雷神导师的建议下,UT-Arlington CSE团队的成员提供了一个巨大的机会,可以体验现实世界中的发展条件和程序。由于各种各样的必要技术,团队面前的任务涉及陡峭的学习曲线,其中许多是团队成员的新手。最初随着团队驾驶无人汽车开发景观,持续测试,开发和部署的发展,尽管进展缓慢,但事实证明是一种成功的做法,并有助于确保生产满足竞争对手要求的车辆。通过协作,跨学科团队的工作经验丰富了每个参与者,并允许每个成员在软件,硬件和一般最佳实践中扩展其工程技能。我们要感谢雷神公司和乌特 - 阿灵顿允许我们参加这个非凡的机会。