这不仅仅是一场比赛,更是两个理念的碰撞。德雷福斯和 MacHack VI 的创造者理查德·格林布拉特都关注人类智慧的本质。格林布拉特继承了西蒙、纽厄尔和肖的风格,认为专家拥有特殊的心理表征和启发式方法,可以帮助他们选择好的举动并拒绝坏的举动。启发式方法是一种特殊规则,并非普遍适用,但通常有助于解决问题。格林布拉特利用自己对国际象棋的了解,在 MacHack VI 中构建了 50 种启发式方法。德雷福斯认为专家不使用任何启发式方法;他们不需要心理表征来下棋。相反,意识和身体的特殊结构使人能够在不同情况下积累经验,从而越来越好地掌握对实践很重要的现实方面。由于计算机没有意识和肉体,它无法达到人类专家的水平。
近年来,人工智能 (AI) 取得了重大进展,甚至超出了人们的乐观预测。利用数据驱动的人工智能,即深度学习技术,已经证明计算机现在可以具备范围广泛、质量卓越的能力,例如以人类的水平解决图像和文本处理任务。尤其是大型语言模型引发了关于这一快速发展领域的机遇和挑战的争论。如果将数据驱动的人工智能与知识表示和推理等符号人工智能技术相结合,那么数据驱动的人工智能剩下的基本挑战(例如事实或逻辑错误)是否会被彻底克服?通用人工智能 (AGI) 系统是否会从中脱颖而出,拥有常识,并事实上完成推动该领域在 20 世纪 50 年代兴起的数十年人工智能探索?鉴于这些问题,我们从混合人工智能的角度回顾了同样数十年关于计算机能力和局限性的哲学争论。在这里,我们讨论了混合人工智能如何更接近于反驳 Hubert Dreyfus 关于计算机不能做什么的著名论断。同时,我们揭示了混合人工智能面临的一个较少讨论的挑战:其开发者可能是其最大的限制因素。