拓扑优化(to)通常使用且经过充分探索。然而,它在航空航天应用中使用的复杂热流体设备设计中的利用是有限的且相对较新的。这是因为流体动力学,传热和形状之间的耦合是复杂且非线性的。此外,由于可能发生的自由形式,从一个到分析产生的几何形状通常非常复杂,而且很难制造。随着添加剂制造(AM)的出现,可以直接制造复杂的几何形状。这项研究开发了一种基于计算流体动力学(CFD)的新遗传算法(GA),以生成用于航空航天应用中使用的热交换器的优化细胞形状。为了实现这种方法,使用体素表示创建了矩形基线细节。通过突变基线限制的次数来产生一个无性群体。然后使用CFD软件包OpenFOAM评估每个设计的性能,然后应用优化算法。GA使用由整体传热和压降组成的复合材料函数对设计进行分类,并基于突变和最高表现设计的结转而生成新一代。该研究还探讨了GA对各种GA选项的敏感性以及不同流动雷诺数的影响。通常,随着雷诺数的增加,最佳相对于基线的最佳提高百分比增加,可能会提高89%。总体而言,该方法可以生成新颖的自由形式设计,这些设计可能为传热应用打开新的性能空间。
在流动的后期,火焰浮力运动引起的速度可高达 1 m/s,产生的雷诺数为 2 × 10 4 。这些值意味着在远离火焰片和容器壁的区域,粘性剪应力与惯性相比可以忽略不计。在火焰片附近,更重要的特征长度是火焰厚度 δ,它将产生 Re ∼ 1。但是,如果火焰附近的速度梯度不大,那么在计算火焰结构时也可以忽略剪应力。在本研究中就是这种情况,因为我们只考虑在静止混合物中传播的层流火焰。流动梯度主要在法线方向,从而产生与压力相比非常小的粘性应力。
最小背景电流 电弧阳极加热系数 电阻加热系数 气体直径 喷嘴熔融金属直径 桥接电流脉冲频率 推力 电弧能量 热输入 短路能量 电流 电弧期间的电流 背景电流 峰值电流 短路期间的电流 恒定焊丝拉伸压力 电弧功率 雷诺数 焊丝电极横截面积 接触面积 时间 电流脉冲周期 电弧时间 背景电流持续时间 熔滴分离时间 峰值电流持续时间 短路时间 焊接电压 电弧期间的电压
在流动的后期,火焰浮力运动引起的速度可高达 1 m/s,产生的雷诺数为 2 × 10 4 。这些值意味着在远离火焰片和容器壁的区域,粘性剪切应力与惯性相比可以忽略不计。在火焰片附近,更重要的特征长度是火焰厚度 δ,它将产生 Re ∼ 1。但是,如果火焰附近的速度梯度适中,那么在计算火焰结构时也可以忽略剪切应力。在本研究中就是这种情况,因为我们只考虑在静止混合物中传播的层流火焰。流动梯度主要在法线方向,导致粘性应力与压力相比非常小。
在本文中,我们研究了湍流环境下的对称性破缺。我们用两个例子展示了从对称状态到对称性破缺状态的转变:(1)随着流体层厚度的变化,二维流动向三维流动的转变;(2)随着磁雷诺数的变化,薄层流动中的发电机不稳定性。我们表明,这些例子具有相似的临界指数,但与平均场预测不同。临界行为可以与波动的乘法性质相关联,并且可以使用随机界面的统计特性结果在一定限度内进行预测。我们的结果表明,可能存在一类受乘法噪声控制的新型非平衡相变。
第 8 章:垂直容器的风荷载.................................................................................178 8.1 介绍...................................................................................................................178 8.2 实验步骤..............................................................................................................179 8.2.1 速度剖面.................................................................................................180 8.2.2 纵向湍流强度和长度尺度.......................................................................181 8.2.3 风洞模型.................................................................................................182 8.2.4 风洞阻塞.................................................................................................184 8.2.5 风洞压力梯度.................................................................................................185 8.2.6 雷诺数效应....................................................................................................185 8.2.7 仪器................................................................................................................188 8.3 测试结果................................................................................................................190 8.4 测试结果在风荷载计算中的应用................................................................195 8.5风洞试验结果与桌面方法的比较......................................................................203 8.6 本章摘要和结论...............................................................................................208
c) 计算每个速度下通过四分之一弦点的俯仰力矩与攻角的关系,并将结果显示在表格中。5. a)。以 20、35 和 50 米/秒的空速运行风洞,并在攻角为 0°、4°、8°、12° 和 16° 时获取垂直安装的压力翼尾流中的尾流压力测量值。每次设置数据之前,务必检查机翼和皮托管的零速度压力测量值。您需要测量并校正零速度时压力传感器中的任何偏移。注意:在较小的攻角值(即最多约 8 度)下,可用的耙子可以充分覆盖整个尾流场。但是,在较高的攻角下,耙子可能无法完全覆盖尾流。为了正确测量这些极端值的尾流场,您需要将耙子移到机翼上方和下方。有关最高攻角尾流场测量设置的帮助,请咨询助教、教授或技术员)b) 绘制标准化尾流测量压力分布 q / q ∞ 与三种不同速度下每个攻角的尾流距离的关系。c) 通过对每个攻角和三个速度的尾流压力分布进行积分,用动量法计算翼型的阻力系数。绘制实验中使用的每个流速的阻力系数与攻角的关系,并将此结果与上面第 3 部分计算出的阻力进行比较。确保对两个不同阻力估计值中的任何差异或差异进行评论。6.确定雷诺数对升力、阻力和 1/4 弦俯仰力矩系数的影响。(绘制压力翼测量的升力和俯仰力矩系数,以及尾流测量的阻力系数与所有可用攻角的雷诺数的关系。)
刘易斯研究中心的 8 x 6 英尺超音速风洞 (SWT) 可供合格研究人员使用。本手册包含风洞性能图,其中显示了总温度、总压力、静压、动压、高度、雷诺数和质量流量随测试段马赫数变化的范围。这些图适用于空气动力学和推进循环。8 x 6 英尺超音速风洞是一个大气设施,其测试段马赫数范围为 0.36 至 2.0。还描述了一般支持系统(空气系统、液压系统、氢系统、红外系统、激光系统、激光片系统和纹影系统)以及仪器和数据处理和采集系统。概述了预测试会议格式。还说明了隧道用户责任和个人安全要求。
开路风洞与闭路风洞 开路风洞、消声风洞和闭路风洞均用于研究各种流动引起的噪声现象的空气动力学和气动声学。测试设施的选择主要取决于应用类型、设计速度和所需的模型比例。首选设置还受空气动力学或噪声测量优先级的影响。由于存在保持雷诺数(惯性力与粘性力之比)的问题,风洞也可以加压并在低温下运行。另一个挑战是,通常需要在非常高的声频下工作,尤其是对于小比例模型。由于使用比例模型产生的噪声频率与模型的大小成反比,这也对声学数据采集和分析系统的能力提出了挑战。