计算机视觉技术在自动驾驶汽车的感知堆栈中起着核心作用。使用此类方法来感知给定数据的车辆周围环境。3D激光雷达传感器通常用于从场景中收集稀疏的3D点云。然而,根据人类的看法,这种系统努力鉴于那些稀疏的点云,因此很难塑造现场的看不见的部分。在此问题中,场景完成任务旨在预测LiDAR测量中的差距,以实现更完整的场景表示。鉴于最近扩散模型作为图像的生成模型的有希望的结果,我们建议将其扩展以实现单个3D LIDAR扫描的场景。以前的作品使用了从LiDAR数据提取的范围图像上使用扩散模型,直接应用了基于图像的扩散方法。差不多,我们建议直接在这些点上操作,并介绍尖锐的和降解的扩散过程,以便它可以在场景规模上有效地工作。与我们的方法一起,我们提出了正规化损失,以稳定在denoising过程中预测的噪声。我们的实验评估表明,我们的方法可以在单个LIDAR扫描中完成场景,作为输入,与最新场景完成方法相比,产生了更多详细信息的场景。我们认为,我们提出的扩散过程公式可以支持应用于场景尺度点云数据的扩散模型中的进一步研究。1
摘要:机载地面穿透雷达系统提供了一种安全且效率的方法,可在挑战性地形中测量雪深和积雪地层,并具有潜在的雪崩危险。雪花龙是一种定制的雪测量系统,其中包含一个未螺旋的航空车辆(UAV)平台和雷达有效载荷。专门设计用于在各种雪覆盖场景上进行雪调查,该系统具有针对此类任务的性能属性。在这里,我们介绍了完整系统的技术实施,再加上在Svalbard上进行的三个广泛的现场活动的验证结果。此外,我们还提供了对雪地无人机获得的雪地层测量结果的见解,并原位获得了雪轮剖分以进行比较分析。通过将雷达观测值与1673的共同位置测量降雪深度相关联,范围从5到200 cm,并揭示了高度的一致性,从而产生了r = 0.938的相关系数。雪花源是可靠有效的工具,可在坡度范围内协助当地的雪崩危险评估,其中有关积雪深度和结构的信息至关重要。
摘要 - 在具有挑战性的环境中需要可靠的定位,需要现代机器人系统才能运行。基于激光雷达的局部化方法,例如迭代最接近的点(ICP)算法,可能会在几何无知的环境中遭受损害,这些环境已知,这些环境已知会导致点云登记性能恶化,并沿弱受约束方向推动散落的优化。为了克服这个问题,这项工作提出了i)稳健的可局部性检测模块,ii)局限性感知到的受限的ICP优化模块,该模块将其与统一的局限性检测模块相结合。通过利用扫描和地图之间的对应关系来实现所提出的可区分性检测,以分析优化的主要方向的对齐强度,作为其细粒度的LIDAR固定性分析的一部分。在第二部分中,然后将此可本质性分析集成到扫描到映射点云注册中,以通过执行受控更新或离开优化的脱位方向来生成无漂移姿势更新。所提出的方法经过彻底评估并将其与模拟和现实世界实验1中的最新方法进行了比较,证明了激光挑战环境的性能和可靠性提高。在所有实验中,所提出的框架表明没有环境特异性参数调整的准确且可推广的可局部性检测和可靠的姿势估计。
非常荣幸能在剑桥学者出版社出版我的作品。虽然部分内容已在相关期刊上发表,但将本书作为一个整体呈现给读者(尤其是没有遥感背景的读者)具有重要价值,可以展示不同学科处理和应用机载激光雷达数据的完整框架。在此,我要感谢我的博士生导师 Bob Haining 教授和 Bernard Devereux 博士,他们让我了解了机载激光雷达领域,并为我打下了坚实的研究基础。我要衷心感谢我的父母,他们毫无保留地支持我的所有重大决定。我还要向我的妻子和双胞胎儿子表示最深切的感谢,他们是我成为更好的学者和人的终生动力。
摘要 - 准确的定位在自主机器人系统的有效运行中起着至关重要的作用,尤其是在诸如施工站点之类的染色体环境中。同时使用LIDAR传感器同时定位和映射(SLAM)已成为一种流行的解决方案,因为它在没有外部基础架构的情况下可以进行功能。但是,现有的al-gorithms表现出重大的缺点。尽管当前的方法在长期轨迹上达到了很高的准确性,但它们在复杂的室内环境中的精确性和可靠性而苦苦挣扎。本文介绍了一种新型的基于功能的LiDAR SLAM系统,旨在解决这些局限性并增强短期精度和整体鲁棒性。使用现有数据集和物理机器人平台评估了所提出的系统,以解决当前实现的局限性,并在挑战现实世界中,尤其是在施工环境中展示改进的穿孔。
ntia.gov › 下载 › 出版物 PDF 2006 年 9 月 27 日 — 2006 年 9 月 27 日 雷达接收器中的模拟到数字 (信息转换) ... AGC 通常在实施圆锥形的飞机跟踪雷达中实施。
2 Public Works Department, Faculty of Engineering, Cairo University, Giza12613, Egypt amr-m.eldemiry@polyu.edu.hk , muhammad.muddassir@polyu.edu.hk , tarek.zayed@polyu.edu.hk Abstract – In this paper, we propose a ground mobile robot that can perform both surface mapping and subsurface mapping using三维激光雷达同时定位和映射系统(3D激光雷达大满贯系统)和地面穿透雷达(GPR)。机器人由配备3D激光雷达传感器的移动平台和安装在固定机箱上的GPR天线组成。机器人可以自主浏览环境并从表面和地下收集数据。表面映射是通过使用±3 cm范围精度的3D激光镜传感器来观察地形的点云,然后对其进行处理以生成3D表面图。地下映射是通过使用GPR天线将电磁脉冲发射到土壤中并接收反射的,然后对其进行处理以生成3D地下图。然后,我们可以融合表面和地下图以获得地形的全面表示。我们在现实世界中(例如桥梁)演示了机器人的性能。我们表明,我们的机器人可以在表面映射任务和GPR数据采集中实现高精度和效率。
这意味着远程飞行员将需要新的自动化和决策支持系统才能操作飞机,因为他们不能依靠眼睛并从驾驶舱中查看。由于远程飞行员在地面上,因此他们需要一个可靠的通信链接,该链接允许远程飞行员与飞机交互并维护命令和控制。
一张焦点堆积的宏观照片,该照片具有多个螺旋形波导和其他测试结构的磷化磷化物光子芯片。芯片宽度仅为0.55厘米。由于磷化磷酸盐的高非线性,其高折射率及其可忽略不计的两光子吸收,使用此芯片可实现S,C和L光学通信带的极有效的光学参数扩增和频率转换。
8 School of Management 1 Annamacharya Institute of Technology and Sciences, 2 Coolsoft LLC, 3 Sree Saraswathi Thyagarajan College, 4,5 Shri Nehru Maha Vidyalaya College of Arts and Science, 6 Kaamadhenu Arts and Science College, 7 Sree Narayana Guru College, 8 BBD University Abstract: This paper explores an advanced solution for enhancing quality control in Printed电路板(PCB)制造是通过集成Yolo(您只看一次)对象检测算法的制造。该系统具有传送带,直流电动机和高分辨率摄像头,用于实时识别和移动PCB上缺陷的定位。Yolo算法过程捕获了图像,有效地识别了各种缺陷,例如焊接问题和组件未对准。通过传送带和直流电动机之间的无缝集成来实现对检查过程的精确控制,从而提高了缺陷检测的速度和准确性。识别缺陷后,该系统包括一种机制,可以将有缺陷的PCB与生产线分开。有缺陷的PCB通过传送带将其改编为指定区域,以确保在制造过程中仅进行高质量的PCB。这种自动化方法可降低人类干预,可显着提高生产效率,降低制造成本并提高整体PCB质量。所提出的系统展示了尖端图像处理技术与强大的机械组件之间的协同作用,为PCB制造关键字中的缺陷检测和隔离提供了全面的解决方案:PCB,DC发动机,PCBIONS,PCBIONS,机器学习,机器学习,工业,缺陷。