因此,除了理论工作之外,德国航空航天中心(DLR)微波与雷达研究所还开发并构建了一种名为 IoSiS(太空卫星成像)的实验雷达系统,用于对获取低地球轨道物体的先进高分辨率雷达图像产品的新概念进行基础研究。本文概述了使用地面 ISAR 对卫星进行高分辨率成像的原理。此外,还概述了实验雷达系统 IoSiS,并简要概述了计划中的 IoSiS-Next Generation 系统概念。最新的真实空间目标测量结果证明了该系统的能力以及使用厘米分辨率成像雷达进行未来基于雷达的空间监视的潜力。作为基于雷达的空间物体成像领域的新产品,全面的模拟结果表明,使用通过多静态成像几何实现的新预期成像概念,可以多么精确地在三维空间中对空间目标进行成像。
该项目由空军研究实验室 (AFRL)、俄亥俄州代顿传感器理事会和孟菲斯大学合作完成。根据该协议,CLION 获得了价值超过 50 万美元的雷达设备,用于建立 ARSIL。
摘要 — 随着 TerraSAR-X 和 COSMO-SkyMed 等超高分辨率 (VHR) 星载合成孔径雷达 (SAR) 传感器的出现,使用 SAR 模拟器的潜力正在增加。在本信中,我们提出了一种新型雷达成像模拟器,它相对容易实现,并在准确性和效率之间找到了平衡。所提出方法的主要目标是获得 SAR 图像中物体几何形状的精确模拟,而不是详细的辐射模拟。该模拟器基于扩展的射线追踪程序,以确定通用物体的哪些表面对后向散射有贡献。后向散射贡献是通过朗伯镜面混合模型计算的。该模拟器已成功应用于从单个检测到的 VHR SAR 图像对人造物体进行 3-D 重建的方法中。在这里,我们说明了它在两个相当不同的结构上的工作,一个矩形山墙屋顶建筑和一个埃及金字塔。
历史上,雷达技术主要应用于工业和国防领域,2020 年该领域仍占据 75% 的市场份额;汽车应用在 2010 年之前就已开始,市场保持着 16% 的增长率。初创公司 Vayyar 看到了医疗和消费应用新市场的潜力,目前占有 0.13% 的份额。该公司的超宽带 (UWB) 射频 (RF) 片上系统 (SoC) 于 2013 年投放市场。该公司最初在医疗应用领域开发了雷达技术,例如基于呼吸的癌症检测和跌倒检测,现在正向车内监控和汽车超短程雷达领域拓展。本报告分析了从 Walabot Home 系统中提取的超宽带 4D 成像射频雷达 SoC VYYR2401,该系统使用 C 和 X 波段检测跌倒。
摘要:随着新卫星数量的急剧增加,全面的太空监视变得越来越重要。因此,高分辨率逆合成孔径雷达 (ISAR) 卫星成像可以提供对卫星的现场评估。本文表明,除了经典的线性调频啁啾信号外,伪噪声信号也可用于卫星成像。伪噪声传输信号具有非常低的互相关值的优势。例如,这使得具有多个通道的系统可以即时传输。此外,它可以显著减少与在同一频谱中运行的其他系统的信号干扰,这对于卫星成像雷达等高带宽、高功率系统尤其有用。已经引入了一种新方法来生成峰值与平均功率比 (PAPR) 与啁啾信号相似的宽带伪噪声信号。这对于发射信号功率预算受到高功率放大器严格限制的应用至关重要。本文介绍了产生的伪噪声信号的理论描述和分析,以及使用引入的伪噪声信号对真实空间目标进行成像测量的结果。
我们在 EWI 大楼的消声室,Fred 正在这里准备“我们的测试对象”L. Carrer、A.Yarovoy,《使用 UWB 3-D 雷达成像和自动目标识别进行隐藏武器检测》,载于 2014 年第 8 届欧洲雷达会议 EURAD 论文集。
PSLV-C56 / DS-SAR是新加坡St Engineering的Newspace India Limited(NSIL)的专用商业任务。ds-sar,雷达成像地球观测卫星是该任务的主要卫星。除此之外,还属于新加坡的六个共同乘客客户卫星。所有卫星将被注入535 km的圆形,并具有5个轨道倾斜度。这是PSLV的第58次飞行和仅在核心配置中的PSLV的第17次飞行。注入所有卫星后,火箭的上阶段将放置在下轨道中,以确保其轨道寿命降低。PSLV-C56发射将从位于Sriharikota的Satish Dhawan太空中心(SDSC)的第一个发射台(FLP)完成。
最近,合成孔径雷达卫星被发射到低地球轨道,掀起了新一轮数据收集浪潮,这将彻底改变对地球的观测。这些卫星配备了 C、L 和 X 波段的图像采集设备,可以透过云层全天候拍摄图像。从它们的极地轨道上,还可以每周甚至每天重复拍摄图像。现在可以将这些海量数据下载到地面站,并使用增强的计算能力快速处理,从而以合理的成本快速获得结果。使用示例包括几乎实时监测地面运动、地面运动的历史匹配以及监测油田生产和 CCUS 活动的能力。雷达成像已成为一种常规交付成果,无需专业编程。