致研究生委员会:我在此提交一份由 Denis Gerald Tri 撰写的论文,题为“从美国海军试飞员学校机载系统训练和研究支援飞机 (ASTARS) 上 AN/APG-68 雷达的整合和测试中吸取的教训”。我已经检查了这篇论文的最终电子版的形式和内容,并建议接受它作为获得理学硕士学位(主修航空系统)的部分要求。
16. 摘要 本研究的重点是使用机载激光雷达 (LiDAR) 数据探测塌陷灾害。前提是塌陷,特别是靠近交通基础设施资产的塌陷,可能会对基础设施资产造成重大损害,因此,能够准确、快速地探测到它们至关重要。然而,使用传统的地面观测方法勘测塌陷既昂贵、耗时、费力又不安全。本研究项目专注于开发准确、快速的基于机载激光雷达的塌陷探测和测绘方法,并将技术转让给交通工程师进行实施和劳动力开发。项目团队还确定了实施国家级塌陷灾害管理系统 (SHMS) 的最佳实践。此外,还为专业教育和培训开发了基于机载激光雷达的塌陷探测和测绘指南。激光雷达探测现有塌陷的有效性受到的关注非常有限。大多数基于 LiDAR 的天坑检测研究都假设基于形态学的表面特征提取方法可以有效检测天坑,因为它们具有几何特性——天坑是地球表面的椭圆形凹陷。然而,由于地形各异,天坑的大小、形状和外观各不相同,这给进一步改进检测带来了更大的挑战
• 该开发将对位于 RRH Trimingham 和 RRH Neatishead 的防空 (AD) 雷达系统产生不可接受的影响;以及 • 该开发将对位于 RAF Weybourne 的技术资产(通信设备)产生不可接受的影响。第一个反对意见保持不变。第二个反对意见已成为申请人和国防部讨论的主题。提交补充信息后,由于该开发对位于 RAF Weybourne 的技术资产的影响而提出的反对意见已被撤回,如国防部 2023 年 2 月 20 日的信函所述。防空雷达 拟议的开发项目将位于距离 RRH Trimingham 约 18.7 公里、距离 RRH Neatishead 约 34.5 公里处,并且将对该/两个地点部署的雷达系统可见。风力涡轮机已被证明会对 AD 雷达的运行产生不利影响。这些包括风力涡轮机附近的雷达灵敏度降低,以及产生“虚假”飞机回波。雷达探测到飞机飞过或在涡轮机所在地飞行的概率会降低,因此特定地区内的涡轮机扩散可能会导致雷达的运行完整性不可接受的下降。这会降低英国皇家空军探测和管理英国主权领空内飞机的能力,从而阻止其有效履行其主要防空职能
环境感知是在动态复杂的操作环境中安全执行任务的重要要求(ASV)的至关重要要求。大多数现有的船舶检测方法都取决于基于相机的方法,这些方法对环境条件敏感,无法直接提供与检测目标有关的空间位置信息。为了克服这一限制,我们提出了一个基于激光雷达的船舶检测和跟踪框架,可以应用于繁忙的海上环境。所提出的框架由两个功能模块组成:船舶检测和多对象跟踪。用于船舶检测,对模块化的网络结构进行了调整,从而使在不同类型的检测网络之间易于切换,以确定检测准确性,检测速度或两者的妥协,具体取决于任务要求。还实施了一种基于卡尔曼滤波器的多目标跟踪方法,以补偿由于船舶运动或闭塞而可能遗漏的任何检测,仅依赖于检测结果。我们还收集了有史以来的第一个现实世界激光雷达数据集,用于横跨泰晤士河和码头的海上应用,包括一系列船舶类型,长度从5 m到40 m,以及不同的船体类型。数据集的组织方式与Kitti数据集类似,可以轻松地将其应用于发达的点云检测网络。值得注意的是,我们的方法在收集的数据集中达到了74.1%的总体检测准确性。所提出的框架和数据集使基于激光雷达的环境感知可行,可在自主海洋导航领域实施和支持开发。
摘要 - 由于缺乏可用的高分辨率雷达数据集,并且在获取现实世界中的数据方面缺乏可用的高分辨率雷达数据集和巨大的困难,因此摘要模拟已成为雷达算法开发和测试的重要工具。但是,由于现有的雷达仿真工具不容易易于访问,需要详细的网格输入并花费小时才能模拟,模拟雷达数据很具有挑战性。 为了解决这些问题,我们提出了Shenron,这是一个开源框架,它有效地仅使用LIDAR点云和相机图像来模拟高档MIMO雷达数据。 我们表明,使用Shenron,可以生成模拟数据,这些数据可用于与实际数据一样有效地评估算法。 此外,人们可以通过雷达的庞大参数空间进行快速迭代,以找到任何应用程序的最佳参数集,并在雷达感知和传感器融合方面具有很大的帮助研究。模拟雷达数据很具有挑战性。为了解决这些问题,我们提出了Shenron,这是一个开源框架,它有效地仅使用LIDAR点云和相机图像来模拟高档MIMO雷达数据。我们表明,使用Shenron,可以生成模拟数据,这些数据可用于与实际数据一样有效地评估算法。此外,人们可以通过雷达的庞大参数空间进行快速迭代,以找到任何应用程序的最佳参数集,并在雷达感知和传感器融合方面具有很大的帮助研究。
技术并没有被当作是谚语中的次子。事实上,它已经成为现代航空电子设备不可或缺的一部分。“几年前,它只是一个只会执行指令的傻瓜盒子。今天,它已经成为整个航空电子系统的主动组成部分,”道森说。“新一代雷达的目的有两个:一是全面减少机组人员的持续工作量。二是创建一个系统,该系统可以查看预定的飞行路线,以确定飞机当前正在做什么,并预测它未来将做什么,以帮助机组人员确定最佳路线,从而提高整体飞行质量。”
CBO发现,一个家园CMD是可行的,但昂贵,成本从约75美元的二线至20年内的4650亿美元不等,以覆盖美国的连续美国。 CBO检查的最低成本体系结构是基于高空无人飞机或卫星携带的雷达的集成系统,将花费约750亿至1800亿美元。 保护阿拉斯加,夏威夷和美国领土的其他区域或地方防御将增加这一费用。 1派出更广泛的CMD架构,该体系结构也保护了加拿大,该体系结构自1957年以来一直与美国正式合作捍卫北美空域,这会增加这一成本,但扩大系统的成本可能会由两国共同承担。 ,由于希望攻击美国的对手有许多替代方法,因此政策制定者需要决定是否值得这类投资。CBO发现,一个家园CMD是可行的,但昂贵,成本从约75美元的二线至20年内的4650亿美元不等,以覆盖美国的连续美国。CBO检查的最低成本体系结构是基于高空无人飞机或卫星携带的雷达的集成系统,将花费约750亿至1800亿美元。保护阿拉斯加,夏威夷和美国领土的其他区域或地方防御将增加这一费用。1派出更广泛的CMD架构,该体系结构也保护了加拿大,该体系结构自1957年以来一直与美国正式合作捍卫北美空域,这会增加这一成本,但扩大系统的成本可能会由两国共同承担。,由于希望攻击美国的对手有许多替代方法,因此政策制定者需要决定是否值得这类投资。
乔治·史汀生十几岁时还是一名业余无线电爱好者,他开始对无线电波着迷,并设计和制造了发射器和接收器。他第一次接触雷达是在第二次世界大战初期,当时他在斯坦福大学超高频实验室外的实验间隙测量海军飞艇的回波。获得电气工程学士学位后,他在加州理工学院学习了一些额外的课程,在鲍登学院和麻省理工学院的海军雷达学校学习,最后成为攻击运输机上的电子军官。战后,他担任南加州爱迪生变频项目的工程师,并在项目完成后加入了诺斯罗普的斯纳克导弹项目。在那里,他偶然涉足技术出版物和电影。1951 年,他被休斯飞机公司聘用,负责撰写一本广为流传的技术期刊《雷达拦截器》。在随后的几年里,他与公司的顶级设计师密切合作,亲眼目睹了机载雷达从第一批全天候拦截器的简单系统到当今先进的脉冲多普勒系统的迷人演变。他见证了第一枚雷达制导空对空导弹的发展、数字计算机首次融入小型机载雷达、激光雷达、SAR 和可编程数字信号处理器的诞生;他还看到了机载雷达技术向太空应用的扩展。1990 年退休后,他仍然活跃在该领域,在莫哈韦国家试飞员学校教授现代雷达短期课程,撰写有关休斯天线辐射图和 RCS 测量设施的技术手册,制作有关新型 HYSAR 雷达的全程叙述交互式多媒体演示,并为 1998 年版《美国百科全书》撰写有关雷达的文章。
Aerosoft Airbus 产品中的气象雷达可与任何气象插件配合使用,甚至无需配合使用。它实际上读取 FSX 中的天气状况,无需链接到任何气象插件。但是,由于它仅能做到这一点,因此也显示了 FSX 中天气的一些局限性。例如,它始终以方块形式构建。我们选择让这种效果可见,因为我们认为气象雷达应该显示天气的位置,而不是理想模拟器中的样子。由于我们模拟了气象雷达的实际工作,因此这也意味着需要进行大量计算,这可能会影响您的帧速率。由于风切变和湍流无法正确放置在 FSX 中,因此目前无法检测到它们。
在采伐和道路设计中使用激光雷达地形的诱惑和陷阱 Finn Krogstad 和 Peter Schiess 的论文发表于 2004 年 6 月 13 日至 16 日在加拿大不列颠哥伦比亚省温哥华举行的 IUFRO 3.06 山地条件下的森林作业联合会议和第 12 届国际山地伐木会议。摘要 机载激光测高 (Lidar) 可以生成细节丰富、精度极高的地形图,即使在被森林冠层遮挡的地面上也是如此。详细的激光雷达地形可以识别可能的着陆位置、难以穿越的溪流、不稳定的土壤、难以穿越的边坡和有用的长凳。这些细节可以减少现场时间,指导道路设计走向更好的选择,并提高我们对成本估算的信心。然而,激光雷达测绘偶尔会失败,这些失败的表示方式将决定激光雷达的可靠性和道路设计价值。我们讨论了首次使用激光雷达测绘塔霍马州立森林的经验,该森林位于 Mt. 南部。雷尼尔山。这种详细的地形测绘用于森林作业设计,例如着陆点和道路位置,作为基于流域的收获和运输计划的一部分。基于激光雷达的办公室设计随后进行了现场验证。对于森林工程设计而言,此类 DEM 成功的关键在于能够(或缺乏)区分地面点覆盖充足或边缘的区域,从而导致优秀或错误的测绘细节。我们讨论了各种方法,这些方法可以识别地面点覆盖边缘的区域,从而形成测绘承包商应遵守的第一组激光雷达数据收集要求。观察树冠下的情况木材采伐和道路规划中经常出现的一个问题是,用于采伐的树木会遮挡必须堆放原木和修建道路的地面。规划中常用的地形图基于航拍照片,其中我们现在想要采伐的林分遮挡了我们必须规划的地面。因此,得到的地形图是树冠顶部的地图,带有假定树高的偏移。不幸的是,树冠并不完全贴合地面,在采伐和道路规划中可能至关重要的细微地形变化并未反映在最终的树冠顶部。地形通常包括土壤不稳定、岩石露头和不平坦的地形区域,这些区域可能会给采伐和道路建设带来困难。激光雷达的工作原理是拍摄数百万张树冠还会遮挡可作为方便着陆点和道路位置的天然土丘和长凳。因此,这些地形图只能作为设计的一般指南,操作的关键要素需要基于现场验证。机载激光地形扫描 (Lidar) 的最新发展使得即使在森林冠层下也可以进行详细的地形测绘。