连接欧洲和北美的北大西洋空域是世界上最繁忙的海洋空域。2017 年,约有 730,000 个航班飞越北大西洋(参考 NAT SPG/54 – WP/08 - NAT EFFG/33 和 NAT EFFG/34 的结果)。在北大西洋的大部分地区,直接管制员飞行员甚高频语音通信 (DCPC VHF) 和雷达监视不可用。配备 FANS 的飞机可通过 CPDLC 进行通信,并且大多数空域都提供 ADS-B 监视。通过要求最高标准的水平和垂直导航性能/精度和操作纪律,可以确保飞机分离保证,从而确保安全。
空域日益拥挤,需要更高效的空中交通管理。为了满足未来的需求,世界各地的航空当局目前正在对传统空中交通管理系统进行重大升级,以升级为下一代航空运输 (NextGen) 系统。NextGen 的关键组件之一是广播式自动相关监视 (ADS-B) 技术。与从地面天线测量飞机距离和方位的标准雷达监视技术(例如一次监视雷达 (PSR) 和二次监视雷达 (SSR))相比,ADS-B 允许飞机使用全球导航卫星系统 (GNSS) 确定自己的位置,然后通过无线电频率定期将其广播到地面站或附近的其他飞机。因此,NextGen 的主要优势之一是能够持续广播有关高度、航向、速度和其他飞行信息,从而降低对昂贵且相对不准确的 PSR 的需求
• ADS-B 用于控制墨西哥湾等雷达监视有限的区域的交通。由于对流天气或不利逆风,使用特殊 ADS-B 航线飞越墨西哥湾的航班平均可节省 7-11 分钟的飞行时间并减少燃料消耗。与使用传统陆地区域导航航线的航班相比,这可以节省资金并减少飞机废气排放。为墨西哥湾石油平台提供服务的配备 ADS-B 的直升机可以在空中交通管制下在目视和仪表气象条件下飞行。ADS-B 允许正确配备的直升机直接获得航线许可。这样可以缩短约 14 海里的航程,并为每个仪表飞行规则 (IFR) 飞行计划节省约 14 加仑的燃料。美国联邦航空管理局估计,从 2009 年 12 月到 2017 年 6 月,航班节省了约 750,000 海里。
飞机应答器提供飞机和地面站之间的连接。通用航空产品具有组合面板和应答器,以节省空间和重量。这些产品可以支持 IFR 操作的 S 模式。地面站 SSR 天线安装在主雷达监视系统的天线上,从而与主回波同步旋转。机载应答器通过机身上的两个天线之一从地面站接收 1030 MHz 载波上的询问代码。然后,这些信号在应答器中被放大、解调和解码。飞机答复被编码、放大和调制为 1090 MHz 载波上的 RF 传输答复代码。如果应答器被配备 TCAS II 的飞机询问,它将选择适当的天线来传输答复。这种技术称为天线分集;这提高了配备 TCAS 的飞机在主飞机上方飞行时的可视性。
广播式自动相关监视 (ADS-B) 系统是未来空中交通系统的支柱之一 [1、2],据估计,目前大约 80% 的商用飞机都配备了 ADS-B 硬件 [3]。它是空中交通管制 (ATC) 使用的一种依赖性和协作性监视系统,其中飞机定期向任何配备监听器传输自己的信息,例如身份、位置、速度等,以进行监视 [4]。该系统的操作框图如图 1 所示。配备监听器的飞机利用机载导航系统(即全球定位系统 - GPS 单元)来计算其位置和速度,然后使用机载发射器(称为应答器)在公共射频 (RF) 信道上广播这些信息。任何配备监听器的飞机都可以接收这些信息,并用于在驾驶舱显示器上编写交通信息。同样,ATC 中心使用地面接收器在控制器的显示屏上生成交通图像。与传统雷达监视相比,ADS-B 系统具有多种优势:最大的优势是易于实施、硬件成本低廉以及位置数据非常准确。它也有一些重要的缺点,包括对卫星导航系统的依赖(可能被破坏、损坏或干扰)和简单的“免费空中”协议。事实上,在商业应用中