版权所有 © BAE SYSTEMS [2006]。保留所有权利。特此授权复制或 [翻译] 本文件的全部或部分内容,但必须完全确认 BAE SYSTEMS 的版权,并复制上述版权声明和本声明。本报告受 Ofcom 委托,旨在就与其作为英国通信行业监管机构职责相关的问题提供独立意见,例如未来技术或英国无线电频谱的有效使用问题。本报告中表达的假设、结论和建议完全是承包商的观点,不应归于 Ofcom。
(U) 海军部未获得维修 F/A-18 大黄蜂战机上的 AN/APG-65 和 AN/APG-73 雷达的公平合理价格。虽然海军供应系统司令部武器系统支持 (NAVSUP WSS) 遵循了联邦采购条例 (FAR) 价格合理性确定要求,但它仅获得了维修 211 个零件中的 100 个零件(47%)的公平合理价格,总计 1202 万美元,并且未获得维修 211 个零件中的 111 个零件(53%)的公平合理价格,总计 3292 万美元,涉及五份确定的交货订单。发生这种情况的原因是 NAVSUP WSS 没有识别出确定接触成本与合同项目编号 (CLIN) 级别的实际接触成本之间的波动,并允许 Vertex M&S 在交货订单中对支持成本进行不一致的分配。接触成本是指可轻松追溯到单个项目的成本,例如在维修产品时接触产品的工人的直接人工,而 CLIN 是国防部合同的一部分,合同按采购的单个项目进行细分。因此,NAVSUP WSS 为维修 211 个零件支付了至少 393 万美元,超出了公平合理的价格。
The next generation planetary radar system on the Green Bank Telescope Patrick A. Taylor National Radio Astronomy Observatory, Green Bank Observatory Steven R. Wilkinson Raytheon Intelligence & Space Flora Paganelli National Radio Astronomy Observatory Ray Samaniego, Bishara Shamee, Aaron Wallace Raytheon Intelligence & Space Anthony J. Beasley Associated Universities Inc., National Radio Astronomy Observatory ABSTRACT The National Radio天文学天文台(NRAO),绿色银行天文台(GBO)和雷神智能与空间(RIS)正在为绿色银行望远镜(GBT)设计高功率的下一代行星雷达系统。作为一个试点项目,由RIS设计的低功率,KU波段发射器(在13.9 GHz时高达700 W)集成在GBO的100米GBT上,并在NRAO的TEN 25米长基线阵列(VLBA)Antennas上收到了雷达回声。这些观察结果产生了最高分辨率,基于地面的,合成的孔径雷达图像,在有史以来收集到的月球上的某些位置,提供了已销售的卫星的大小和旋转状态特征,并以21亿米的距离(〜5.5个月球距离)检测到近地球的小行星。设计工作继续以使用VLBA的500 kW,KU频段行星雷达系统的最终目标,使用VLBA和未来的下一代非常大的阵列(NGVLA)作为接收器,具有目标表征和成像的能力,用于太空情境/领域的意识和行星科学/行星科学/国防。作为近期的下一步,中等功率的KU波段发射器(至少为10 kW)的集成将在GBO/NRAO上开发端到端系统以进行实时雷达观测。1。引入空间意识,空间中自然和/或人为物体的预测知识和表征是美国(美国)空间活动的关键能力。在美国进行雷达天文学和行星防御的高功率雷达基础设施通常依靠国家科学基金会(NSF)的资产和国家航空航天及空间管理局(NASA)来执行这一任务。自2020年以来,波多黎各的Arecibo天文台威廉·E·戈登(William E. Gordon)望远镜倒塌,美国科学界对高功率雷达观察的访问已大大减少,从而使加利福尼亚州的70 m金石望远镜(DSS-14)在加利福尼亚州的高空网络中,仅在加利福尼亚州的一部分中,唯一的范围是一个范围的范围。在Arecibo崩溃时,Associtions Inc.(AUI)管理国家射电天文学观测站(NRAO)和绿色银行观测站(GBO),以及合作伙伴雷神智能与空间(RIS)刚刚使用100-m Robert C. Byrd Green Bank Telescope(gbt) 1,作为雷达发射器和非常长的基线阵列(VLBA)的十米天线作为接收器。 GBT经常充当雷达接收器,用于从Arecibo和Goldstone的传输中,由于其大量孔径和可操作性,这是GBT首次用作GBT作为雷达发射机。 在使用GBT/VLBA系统进行的两个观测活动中,我们获得了月球的合成孔径雷达(SAR)图像,以两个已停产的卫星的形式收集到空间碎片,并检测到一个近乎地球小行星。1,作为雷达发射器和非常长的基线阵列(VLBA)的十米天线作为接收器。GBT经常充当雷达接收器,用于从Arecibo和Goldstone的传输中,由于其大量孔径和可操作性,这是GBT首次用作GBT作为雷达发射机。在使用GBT/VLBA系统进行的两个观测活动中,我们获得了月球的合成孔径雷达(SAR)图像,以两个已停产的卫星的形式收集到空间碎片,并检测到一个近乎地球小行星。详细信息在[1]中提供。在这里,我们讨论了2020年11月和2021年3月进行的GBT/VLBA雷达观察的实验和结果,以及针对高功率,下一代行星雷达系统的计划。NRAO/GBO/RIS团队目前正在开发的新技术具有直接解决和克服损失Arecibo望远镜造成的科学能力差距的潜力。除了实现前所未有的科学外,我们的下一代行星雷达系统还可以添加
TWT 极大地改变了雷达系统、电子战、通信系统和空间应用的防御能力。由于其高功率放大能力和耐用性,它们在国防系统中发挥着关键作用。它们的效率和可靠性使其成为远程通信、雷达系统和电子战应用的必备技术。凭借其久经考验的记录,TWT 在增强现代国防技术能力方面仍然不可或缺。
摘要。本文介绍了德国莱布尼兹大气物理学研究所(54.12°N,11.77°E)的莱布尼兹大气物理学研究所的扩展的技术规格。升级的组件与现有的具有日光的雷利 - 米兰(RMR)温度激光雷达(RMR)温度激光雷达(RMR)温度激光雷达。新系统包括一个带有激光,望远镜和检测器的独立激光雷,该激光与(旧的)温度激光雷达同步并适应。结果,通过RMR激光雷达的组合,用三个(垂直和倾斜)梁探测了大气。这项工作旨在强调使用单边碘细胞技术来构建多普勒 - 雷利激光痛系统的最新创新,该技术允许同时测量风,温度和气溶胶。我们将详细介绍支撑子系统,这些子系统允许高度的激光自动化,并简单地提供有关该系统的关键技术信息,该系统将支持读者在额外的RMR风温型激光痛系统中的发展。我们展示了时间分辨的温度和风声,达到约90 km。这些数据与35至50 km之间的ECMWF-IF-ifs pro填充非常吻合,但显示出更大的可变性。在伴侣界中,我们将介绍与数据处理链相关的算法设计和不确定性预算。
突出/复杂的隐形技术,用于降低敌方雷达对飞机的可见性。近年来,工程和信号处理领域使得隐形技术在飞机上的实现成为可能,从而有效地欺骗敌方雷达系统。然而,由于环境或缺乏甚至更复杂的先进雷达系统等一些限制,我们能够将可见性降低到一定限度。一些重要的研究已经开展,并取得了足够的成功,将其命名为隐形技术;其中之一就是飞机的回声消除。本文介绍并描述了更为突出的隐形技术。这些协议可以通过在这些领域进行广泛的研究来实现。所解释的一些技术非常有前景,它几乎给我们带来了零可见性,换句话说,即使是一些先进的雷达系统也几乎不可能探测到飞机。隐形技术背后的概念基于反射和吸收原理,使飞机“隐形”。将传入的雷达波偏转到另一个方向,从而减少波的数量,* 通讯作者:Navdeep Banga,航空工程师,SGRJI 国际机场,印度
联邦机构使用 2700-2900 MHz 频段来操作各种类型的雷达系统,这些雷达系统执行对美国安全可靠的空中交通管制 (ATC) 和准确的天气监测至关重要的任务。这包括机场监视雷达 (ASR) 系统和气象雷达。ASR 系统由联邦航空管理局 (FAA) 和国防部 (DoD) 运营,用于监视国家空域内及周围的合作和非合作目标。ASR 还可以具有一些有限的天气监测功能。美国国家气象局 (NWS) 在 2700-2900 MHz 频段运营着一个下一代气象雷达 (NEXRAD) 系统网络,该系统提供有关风暴、降水、飓风和其他重要气象信息(降雨量和降雨率、风速、风向、冰雹、雪)的定量和自动实时信息,其空间和时间分辨率高于以前的气象雷达系统。NEXRAD 系统由美国国家气象局、联邦航空管理局和国防部在美国各地运营。
Blighter Surveillance 推出 A422 无人机探测可部署雷达系统。Blighter Surveillance System 表示,其最新的 A422 雷达系统是一款完全集成的现成无人机探测和地面监视系统。该系统旨在探测拥挤的城市环境中的无人机,可在白天和夜间条件下运行。该技术可以探测、定位和识别无人机系统 (UAS)。它使用简单的模块化桅杆进行部署,功耗低,具有电源和电池供电选项。用户定义的地理警报区允许无人值守监控,并结合带有背景地图的目标显示。
2.5.2 光学系统 ................................................................................................9 2.5.3 雷达系统 ................................................................................................10 2.5.4 声学系统 ................................................................................................11 2.5.5 激光雷达 ........................................................................................................12 2.5.6 传感器汇总 ................................................................................................13
摘要。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1 简介。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。2 方法。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3 测试技术的描述。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3 雷达系统。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。...... div>..........3 射频识别系统 .......。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。4 测试说明。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。5 测试结果(OTS 系统)。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。8 系统1—雷达备用警报系统 201 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。8 系统2——奥格登智能雷达。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。12 系统3——守护者警报。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。18 系统4—Mintronics 护卫。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。22 系统 5 — Nautilus Buddy 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。28 测试结果(原型系统)。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。34 系统 6 — 超宽带雷达。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。..34 系统 7—ID International,RFID 系统 ...................。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。35 系统8——匹兹堡研究实验室HASARD系统。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。38 结论。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。40 个雷达系统。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。40 射频识别系统。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。40 条建议。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。41 参考文献。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。41 附录 A:碰撞警告系统测试说明。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。42