NAVSEA 标准项目 FY-25 项目编号:009-34 日期:2023 年 10 月 1 日 类别:I 1. 范围:1.1 标题:承包商设施中无人船舶的防火;完成 2. 参考:2.1 NFPA 标准 312《建造、修理和闲置期间船舶的防火标准》2.2 29 CFR 第 1915 部分《造船厂就业职业安全与健康标准》3. 要求:3.1 按照 2.1 和 2.2 以及本项目的要求,在承包商设施中完成无人船舶的防火。3.2 在工作开始前,保留一份符合 2.2 要求的消防安全计划以供审查。除 2.2 的要求外,该计划还必须包括并确定火灾报告方法、消防设备和组织(有偿或志愿)、维护畅通消防通道的程序和最近的市政消防组织,包括预计的响应时间。3.3 提供消防设备,包括:3.3.1 在开始工作之前,必须使用连接到能够提供 150 GPM 和 60 PSIG 的水源的歧管来提供消防水。3.3.1.1 歧管的数量必须足以允许使用 2 根长度不超过 100 英尺的 1-1/2 英寸软管到达船上的所有点(当船舶在干船坞或海上铁路上时,包括水下船体)。3.3.1.2 必须将软管连接到歧管,并安装多用途组合雾化和直流喷嘴。 3.3.1.3 通过皮托管法或在线流量计验证水量和压力是否符合这些要求。
摘要 微海绵是一种多孔微球,尺寸从 5 到 300 微米不等,用于聚合物输送系统。它们已被用于生物医学应用,包括靶向药物输送、透皮药物输送、抗癌药物输送和骨替代品。本研究旨在详细研究基于微海绵的药物输送系统的现有趋势和未来前景。当前的研究调查了微海绵输送系统的设计、操作和可能的治疗用途 (MDS)。彻底调查了基于微海绵的配方的治疗潜力以及专利数据。作者讨论了几种生产微海绵的有效方法,包括液液悬浮聚合、准乳液溶剂扩散、水包油包水 (w/o/w) 乳液溶剂扩散、油包油乳液溶剂扩散、冻干法、致孔剂添加法、振动孔口气溶胶发生器法、电流体雾化法和超声辅助微海绵。微海绵可通过促进药物释放来减少不良副作用并提高药物稳定性。亲水性和疏水性药物可装入微海绵并运送到特定目标。与传统分配方法相比,微海绵输送技术具有许多优势。微海绵是一种具有多孔表面的球形海绵状纳米颗粒,可帮助提高药物稳定性。它们可有效改变药物释放,同时减少副作用。
近年来见证了隐喻识别程序(MIP/VU)的发展,这是一种逐步的协议,旨在识别话语中隐喻使用的单词。但是,MIP(VU)的优点,该过程对打算使用其输出作为涉及定量成分的语义场分析的基础的学者给了一个问题。取决于研究问题,隐喻分析师可能对该程序标准化的分析水平(即词汇单位或词汇)(包括短语和句子)的语言有兴趣。然而,试图使该方法的独家关注与隐喻相关的单词的独家关注一直是批评的目标,以及其他基于缺乏明确的单位形成指南的理由,因此,他们的分析和测量单位不一致。利用来自美国西班牙语的报纸对迁移计划的报道(被称为DACA的迁移计划)(儿童到达的递延动作),该文章描述了分析师在尝试使用包含雾化的隐喻单词的数据集时可能会遇到的挑战,以作为后续量化半态分析的输入。它的主要方法论贡献包括提案和以下方式扩展现有MIP(VU)协议的三种可能方法的说明,以允许其以可靠和系统的方式捕获词汇之上的隐喻字符串。前两种方法是程序性的,并且需要根据研究问题来制定A-Priori组的分组指导。一个人偏离了半疾病标准(方法1),另一个采用骨科学方法(方法2)。第三种方法的自下而上,涉及LEXEMES的临时分组,并添加了一个描述性参数,该参数旨在跟踪分析师做出的分组决策,从而始终维护透明度。
摘要:气管肿瘤虽然很常见,但在成年人中通常是恶性的。手术去除是非转移性肺部恶性肿瘤的主要疗法,但只有一小部分非小细胞肺癌患者才有可能受到肿瘤的数量和位置以及患者的整体健康状况的限制。本研究提出了另一种治疗方法:使用肺泡导管通过肺部路线施用雾化化学治疗颗粒,以靶向肺部肿瘤。为了提高对病变的递送效率,必须了解局部药物沉积和粒子转运动力学。本研究使用经过实验验证的计算流体颗粒动力学(CFPD)模型来模拟在具有10代(G)的3二维气管机关树中吸入化学治疗颗粒的传输和沉积。基于颗粒释放图,提出了有针对性的药物输送策略,以增强G10中两个肺部肿瘤部位的颗粒沉积。结果表明,受控药物释放可以改善两个目标区域的颗粒递送效率。使用气管导管的使用显着影响靶向肿瘤的颗粒递送效率。参数分析表明,使用较小的导管可以根据肿瘤的位置和所使用的导管直径的位置将超过74%的颗粒传递到靶向肿瘤部位,而使用常规颗粒给药方法少于1%。此外,结果表明颗粒释放时间对粒子沉积在同一吸入率中具有显着影响。这项研究是理解导管直径对局部气管注射对靶向小肺气道靶向肿瘤的第一个步骤。
抽象背景吸入的肺选择性泛 - 果酶激酶抑制剂nezulcitinib在第二阶段试验的第1部分中具有有利的安全性和潜在疗效信号,在严重的Covid-19患者中,支持第2部分。方法第2部分是一项随机的双盲阶段2研究(NCT04402866)。年龄在18-80岁的住院患者,患有确认的症状性共vid-19,需要补充氧气(不包括基线侵入性机械通气)1:1与雾化的Nezulcitinib 3 mg或安慰剂3 mg或安慰剂或安慰剂,最多7天,使用背景标准疗法(包括皮质类固醇)。功效终点包括至今第28天的无呼吸衰竭(RFF)作为主要终点。次要终点包括安全性和从基线氧饱和度(SAO2)/第7天启发的氧(FIO2)比的比例,而28天死亡率是预先指定的探索性终点。在2020年6月至2021年4月之间的结果中,接受了205例患者(Nezulcitinib,103;安慰剂,102)。在主要终点(RFF天;中位数,21.0 vs 21.0; p = 0.6137)或次级功效端点中,Nezulcitinib与安慰剂之间没有统计学上的显着差异。nezulcitinib通常具有良好的安全性。得出结论,尽管预先指定的原发性,次要和探索性疗效终点(包括RFF到第28天),但未达到第7天的基线SAO2/FIO2比率,而未达到28天死亡率,但NEZULCITINIB通常可以容忍良好,并且具有良好的安全性。需要进一步的研究来确定Nezulcitinib的治疗是否在COVID-19患者的特定炎症生物标志物定义的特定生物标志物群体中赋予临床益处。
肺部和北美的肺化分枝杆菌(NTM)的患病率正在增加。大多数肺NTM是由鸟分枝杆菌(MAC)引起的。肺MAC的治疗是次优的,失败率范围从30%到40%,需要开发新的疫苗。在这项研究中,我们测试了两种全细胞疫苗,DAR-901(HEAD杀死M. Obuense)和BCG(Live Pive nive nive s. Bovis),通过首先对Balb/C小鼠进行免疫接种,然后进行过夜刺激过夜刺激,从而诱导MAC交叉反应免疫。研究这些疫苗预防MAC感染的能力,BALB/C小鼠以DAR-901(皮内)或BCG(皮下或鼻内内)接种疫苗,并在4周后用雾化的MAC挑战。一些通过饲料用克拉霉素治疗了接受BCG接种的小鼠。感染后4周对免疫小鼠和未接种疫苗的对照进行肺CFU。 Our results showed that i) DAR-901 induced cross-reactive immunity to MAC and the level of MAC cross-reactive immunity was similar to the level of immunity induced by BCG, ii) DAR-901 and BCG protect against aerosol MAC, iii) mucosal BCG vaccination provided the best protection against MAC challenge, and iv) BCG vaccination did not interfere with anti-MAC activities of克拉霉素。肺CFU。Our results showed that i) DAR-901 induced cross-reactive immunity to MAC and the level of MAC cross-reactive immunity was similar to the level of immunity induced by BCG, ii) DAR-901 and BCG protect against aerosol MAC, iii) mucosal BCG vaccination provided the best protection against MAC challenge, and iv) BCG vaccination did not interfere with anti-MAC activities of克拉霉素。
Agbaglah, Gbemeho 流体动力学不稳定性,计算流体力学,液滴/气泡,雾化和空气动力学 Almubarak, Yara 软机器人,水下机器人,智能材料 2115 7-1989 YaraAlmubarak@wayne.edu Arava, Leela(纳米材料,能源存储主任 2140 7-1986 larava@wayne.edu 研究生院) Ayorinde, Emmanuel 结构复合材料力学 2148 7-5548 emmanuel.ayorinde@wayne.edu Ghaffari, A zad 地面和空中自主车辆的安全导航 2142 -- aghaffari@wayne.edu Hasan, M. Arif 拓扑声学,量子-经典 2138 7-3905 Hasan.Arif@wayne.edu 类比,机械超材料 Chalhoub, Nabil (主席) 动力学,振动,控制 2105 7-3753 ab9714@wayne.edu Islam, Mahbub ReaxFF 和 eReaxFF 分子动力学 (MD),2119 7-3885 gy5553@wayne.edu 密度泛函理论 (DFT),锂离子界面化学,金属硫电池 Jansons, Marcis 发动机技术,燃烧,光学 2125 7-3880 mjansons@wayne.edu 诊断 Ku, Jerry 电动汽车和电池 2117 7-3814 jku@wayne.ed 建模仿真和控制,传热和燃烧 Lai, Ming-Chia 热流体工程,能源,2123 7-3893 lai@eng.wayne.edu 推进 Newaz, Golam 先进材料,复合材料 2135 7-3877 gnewaz@eng.wayne.edu Ozbeki, Ali 有限元方法,产品开发和设计 2146 7-3796 ozbeki@wayne.edu Pylypchuk, Valery 振动,动力学和稳定性 2118 7-1233 pilipchuk@wayne.edu Samimi-Abianeh, Omid 热力学,燃烧,多相流 2127 7-3782 o.samimi@wayne.edu (本科研究主任) Tan, Chin-An 动力学,结构和生物系统控制 2137 7-3888 tan@wayne.edu Wu, Sean F. 声学,振动,噪声控制和信号处理 2133 7-3884 swu@eng.wayne.edu Wu, Xin 材料加工与制造 2144 7-3882 xwu@eng.wayne.edu 员工
摘要结核病(TB)的抽象痰收集和测试是有问题的,这是有问题的,因为可能进行了雾化,难以生成优质的样品以及复杂的DNA提取方法。舌头拭子便宜,微创,并且是痰收集的有前途的替代品。我们使用Truenat MTB加上Molbio诊断的测定法研究了舌头签名诊断的诊断精度,并直接使用PCR处理方法。每个参与者使用两个尼龙的拭子和两个旋转的聚酯棉签收集四只舌头拭子。在收集舌头样品后,参与者还提供了两个痰液样品,这些样品由Cepheid Xpert MTB/RIF Ultra或培养物进行了测试。在签名的81名参与者中,有24名参与者(30%)是痰液中TB疾病阳性的。使用Truenat MTB Plus测试,舌头棉签具有54%(52/96)的灵敏度和99%(218/220)的特异性,与痰液Ultra相比。粗裂解物,这允许增加样品输入。使用这种方法,舌头拭子具有70%(67/96)的灵敏度和94%(216/224)的特异性。使用数字PCR的结核分枝杆菌(MTB)样品定量产生20份(最小)和34,000份(最大)(最多)MTB的MTB。此外,连续收集的舌头拭子导致了相似的MTB水平,而Spun聚酯拭子则与尼龙锁的拭子进行了等效。总体而言,这项研究表明,舌拭子样品与Truenat MTB测试平台兼容,而直接对PCR方法是可行的诊断解决方案。
摘要:高压燃油泵的设计开发是必须的,以满足汽车和工业最新应用的最新要求。直接的燃料注入系统以及替代燃料需要在燃油泵技术方面提高其效率,可靠性和适当控制排放的新步骤。本文讨论了燃油泵设计中的主要发展,重点是高压系统,这些系统可以通过降低磨损和支持严格排放标准的燃油输送更好。关键字:高压燃油泵,直接喷射,燃油输送系统,排放控制,汽车燃油泵,燃油效率,泵耐用性,替代燃料关键点1.从传统到高压系统的过渡:这种从港口燃料注入到直接燃油喷射需要更高的燃油压力。直接注入系统中使用的更强大的高压泵将燃料直接喷入燃烧室,以更好地雾化和性能。2。直接注入系统中的高压泵:使用直接喷射系统的内燃机燃料供应是通过高压燃油泵在500到2500 bar的压力范围内完成的。燃料输送是最佳控制的,以提高燃烧效率,提高燃油经济性并减少有害排放。3。高压燃油泵的好处:在各种优势中,高压燃油泵提供提高的燃烧效率,更好的油门响应和减少的排放。4。5。它们始终确保为高性能发动机提供非常准确的燃油输送系统,并产生较小的污染物,例如氮氧化物和碳氢化合物。增加压力容量:随着燃油泵技术的进步,泵能够达到3,000杆以上的压力。这可以实现更好的燃料雾化;因此,除了发动机性能的总体改善之外,燃烧效率与排放的伴随减少一起增加。压电燃油泵:压电燃料泵中的电控执行器控制着精确的定时和压力。该技术提供了更快,准确的燃料输送,尤其是在需要高压应用的高性能引擎中。
意大利米兰和马萨诸塞州波士顿,2022 年 4 月 21 日 — 赞邦是一家专注于创新治疗和护理以改善人们健康和患者生活质量的跨国制药公司,该公司今天宣布,美国食品药品监督管理局 (FDA) 已授予粘菌素甲磺酸钠粉末雾化溶液 (CMS I-neb®) 突破性疗法认定,用于降低被铜绿假单胞菌定植的非囊性纤维化支气管扩张症 (NCFB) 成人患者的肺部恶化发生率。NCFB 是一种慢性、进行性、不可逆的呼吸系统疾病。目前尚无获批的吸入疗法可用于治疗支气管扩张症和慢性铜绿假单胞菌定植患者。突破性疗法认定得到了 3 期 PROMIS-I 研究数据的支持,该研究表明,CMS I-neb® 显著降低了 NCFB 和铜绿假单胞菌慢性感染患者的年发作率,这是该试验的主要终点。此外,该试验还达到了重要的次要终点,包括与安慰剂相比,严重发作次数减少、首次发作时间延长,以及生活质量 (QoL) 改善。事实证明,该治疗耐受性良好,两组之间的不良事件相似。3 期试验的数据最近于 2021 年 9 月在欧洲呼吸学会 (ERS) 国际大会上公布。Zambon 首席执行官 Roberto Tascione 表示:“由于全球尚无针对铜绿假单胞菌定植的 NCFB 患者的获批药物,FDA 授予的突破性疗法认定标志着我们在支持我们为罕见和严重呼吸系统疾病患者开发和提供治疗选择的使命方面迈出了重要一步。” “我们很自豪 FDA 已经认识到 CMS I-neb ® 的重要性以及为这些患者开发创新治疗方法的迫切需要。”美国 FDA 授予突破性疗法认定是为了加速旨在治疗的试验药物的开发和监管审查