o 001A-F - 替代喷气燃料供应链分析 o 025 - 国家喷气燃料燃烧计划 – 领域 #1:化学动力学燃烧实验 o 026 -(完成) - 国家喷气燃料燃烧计划 – 领域 #2:化学动力学模型开发与评估 o 027 - 国家喷气燃料燃烧计划 – 领域 #3:高级燃烧测试 o 028 - 国家喷气燃料燃烧计划 – 领域 #4:燃烧模型开发与评估 o 029 - 国家喷气燃料燃烧计划 – 领域 #5:雾化测试与模型 o 030 - 国家喷气燃料燃烧计划 – 领域 #6:裁判旋流稳定燃烧室评估/支持 o 031 - 替代喷气燃料测试与评估 o 032 -(完成) - 石油喷气燃料全球温室气体排放生命周期评价 o 033 - 替代燃料测试数据库 o 034 - 国家喷气燃料燃烧计划 - 领域#7:整体计划整合与分析 o 052 - 航空电气化战略比较评估 o 065 - 快速喷气燃料预筛选的燃料测试方法 o 066 - 高热稳定性燃料的评估 o 067 - 燃料加热对燃烧和排放的影响 o 073 - 使用替代燃料的燃烧室耐久性
摘要:将肺暴露于环境中不同来源的机载毒物可能导致急性和慢性肺部甚至全身性炎症。香烟烟是慢性阻塞性肺部疾病的主要原因,尽管现在不发达国家的城市地区的木烟被认为是呼吸道疾病的主要原因。真菌孢子中的霉菌毒素对呼吸道疾病的职业风险构成职业风险,并对居住在潮湿建筑物中的人们造成了健康危害。石棉和二氧化硅(来自建筑材料)以及重金属(来自油漆)的微观空气中的微粒是室内空气污染的其他来源,会导致呼吸道疾病,并且已知在实验动物中引起呼吸道疾病。ricin以雾化形式是一种潜在的生物武器,它极具毒性但相对易于产生。尽管上述药物属于不同类别的有毒化学物质,但它们的致病性相似。他们诱导巨噬细胞的募集和激活,激活有丝分裂原激活的蛋白激酶,抑制蛋白质合成以及白介素-1β的产生。靶向巨噬细胞(使用纳米颗粒)或白介素-1β(使用针对蛋白激酶的抑制剂,nod样受体蛋白3或p2x7)的产生可能有可能用于治疗这些类型的肺部炎症,而不会影响对细菌感染的天然免疫反应。关键字:香烟,霉菌毒素,毛毒素,ricin,炎性症,巨噬细胞,抑制剂
研究发现,通过激光粉末床熔化增材制造 (LPBF) 熔化 316 L 不锈钢后,从熔池中喷出的飞溅颗粒具有在雾化 316 L 粉末中未观察到的形貌。该飞溅由大球形颗粒、高度树枝状的表面、带有吸积液体盖子的颗粒以及在凝固前由液带固定在一起的多个单个颗粒的聚集体组成。本研究的重点是另一种独特的飞溅形貌,它由较大的球形颗粒组成,其表面氧化斑点表现出广泛的表面结构分布,包括有组织的图案。使用多种成像技术对具有有组织的表面氧化物图案的飞溅颗粒的表面和内部颗粒特征进行了表征。观察结果如下:1)斑点位于飞溅颗粒表面,未明显渗透到内部,2)斑点为非晶态,富含硅(Si)-锰(Mn)-氧(O),3)颗粒和斑点之间存在两部分富含铬(Cr)-O的层,4)斑点的顶面存在富含Cr-O的形态特征,5)飞溅颗粒的成分与316L一致,但远离斑点处飞溅颗粒中的Si含量似乎有所降低,6)飞溅颗粒内部存在小的富Si球形颗粒。
微塑料(MPS)是一种新兴的污染物,具有许多未知的健康和环境后果。MPS进入环境后,它们会暴露于自然风化中,这可以改变其润湿性并增加其裸露的表面积。表面积的增加为微生物提供了底物,进而改变了MPS的表面特征。此外,在沉积之前,可以轻松地将MPS雾化和长距离进行。当MP在大气中,它们不仅与其他污染物相互作用,而且还可以充当冰核颗粒(INP),为云形成和影响降水提供了基础。实际上,最近的一项研究发现云中存在的MP。To evaluate the hypothesis that MPs may act as INPs, polystyrene microplastics varying in size (1 µ m to 100 µ m) and surface roughness were subjected to a freezing droplet assay from 0 ◦ C to approximately -14 ◦ C. A subset of these MPs were then added to the culture of a known bacterial ice nucleator, Pseudomonas syringae , which has been shown to play a role in水周期。这些用丁香假单胞菌培养的MP也暴露于相同的冷冻液滴测定中,并将结果与单独的MPS进行比较。我们的结果表明,MPS上生物膜的大小,粗糙度和存在会影响其作为INP的能力。这些结果对在整个环境中建模MPS及其对云和气候的影响有影响。
吸入式肺癌治疗因其直接、非侵入性药物输送至肺部、且发生严重全身毒性的可能性低而具有良好的前景。因此,化疗药物在临床上是通过溶液或悬浮液制剂的雾化给药的,这些药物在肺部吸收有限、全身毒性相对较轻。然而,在所有这些临床试验中,即使在受肺毒性限制的最大药物剂量下,肺癌患者也没有明显更好的抗癌效果。因此,我们强烈需要既能提高抗癌效果又能降低肺毒性的方法。除了全球范围内可用来治疗局部呼吸系统疾病的压力定量吸入器 (pMDI) 和干粉吸入器 (DPI) 之外,最近药物和技术的创新也鼓励我们采取新的治疗或药物输送概念,朝着有效的吸入式肺癌治疗迈出下一步。这些包括发现用于新型癌症治疗的靶细胞/分子和候选药物、开发用于有效肺部药物输送的高性能吸入装置以及建立功能性纳米颗粒/微粒制造技术。本综述重点介绍了用于肺癌治疗的吸入药物的现状和未来进展,包括概述迄今为止可用的吸入装置、药代动力学和临床试验结果,以及一些基于药物输送系统的新型配方策略,以实现增强的抗癌效果和减弱的肺毒性。
通过雾进行成像在诸如自动驾驶汽车,增强驾驶,飞行飞机,直升机,无人机和火车等工具中具有重要的应用。在这里我们表明,从雾反射的光的时间填充具有分布(伽马),该分布与从雾(高斯)遮住的物体所反映的光中不同。这有助于区分背景光子与雾和信号光子从遮挡物体反射的信号光子之间。基于此观察结果,我们恢复了被密集,动态和异质雾阻塞的场景的反射和深度。对于实际用例,成像系统以最小的占地面积为单位的反射模式设计,并基于LiDAR硬件。特别是,我们使用单个光子雪崩二极管(SPAD)摄像机,该摄像头将计入单个检测到的光子。在没有先验知识的情况下,开发了一个概率计算框架,以估计雾化本身的雾性特性。其他解决方案是基于雷达的,该雷达遭受分辨率较差(由于长波长)的障碍,或者按时门控遭受较低的信噪比。建议的技术在雾室中产生的多种雾密度中进行了实验评估。它在可见度为37厘米时演示了离相机57厘米的恢复对象。在这种情况下,它以5厘米的分辨率恢复了深度,并且场景反映了PSNR和3的4DB的反射。4×SSIM的重建质量随时间推移门控技术。4×SSIM的重建质量随时间推移门控技术。
摘要。气溶胶生成技术扩展了气溶胶质谱法(AMS)的实用性,用于对机载颗粒和液滴的化学分析。但是,标准的雾化技术需要相对较大的液体量(例如,几毫升)和限制其效用的高样品质量。在这里,我们报告了需要低至10 µL样品的微型欺凌AMS(MN-AMS)技术的发展和表征,并且可以通过使用同位素标记的内部标准标准标记的Or- ganic和无机物质的纳米含量水平进行定量(34 sO 34 os 34 os)。使用标准SO,该技术的检测极限分别以0.19、0.75和2.2 ng的硫酸盐,硝酸盐和器官确定。这些物种的分析回收率分别为104%,87%和94%。该MN-AMS技术成功地应用了使用微小颗粒物(PM)采样器收集的过滤器和iM骨骼样品,可在未蛋白质的大气表调节平台上部署,例如未蛋式的空中系统(UASS)和绑扎气球系统(TBSS)。从能源部(DOE)南部大平原(SGP)天文台进行的UAS场运动收集的PM样品的化学组成。与通过共同固定的气溶胶化学物种物种(ACSM)测量的原位PM组成进行了很好的比较。此外,MN-AM和离子色谱(IC)很好地同意硫酸盐和硝酸盐的测量
摘要。生物颗粒物质或生物溶质醇是大气气溶胶的子集。他们通过几种知识较低的机制影响了气候,空气质量和健康。尤其是,对生物Aerosol的Viabil ity与空气质量或气象条件之间可能关系的定量研究是一个开放且相关的问题。通过分析在活动内运动中收集的数据来检索这种可观的相关性的困难可以使在大气模拟室内(ASC)内部控制良好的条件下进行的有针对性实验受益。chambre(气溶胶建模室和生物 - 大氧溶胶研究室)是热那亚(意大利)设计和构建的ASC,旨在对生物溶质溶胶进行实验研究。在本文中,我们关注细菌生存能力。开发并进行了彻底测试,以培养合适的细菌种群(大肠杆菌),在可行细胞的腔室内进行雾化和注入,暴露于Chambre内部的可行性变化,在选定的条件下保持,并在最佳条件下持有,并在最终饲养可行细菌的浓度。整个过程显示,当Chambre保持在参考基线状态时,总(t)和可行的大肠杆菌分别为153和32分钟,V:T:T寿命比为40±5分钟。变异的系数13%显示了该方案对细菌暴露于其他的生存能力的敏感性也对生存能力的变化(例如污染)条件。目前的结果为首先结果显示了将大肠杆菌菌株暴露于无X浓度和太阳照射的可行性降低,并进行了讨论。
摘要 背景 很少有研究评估犬支气管败血波氏杆菌疫苗的免疫持续时间,迄今为止,还没有发表关于口服犬支气管败血波氏杆菌疫苗免疫持续时间的研究。本研究旨在确定单剂口服支气管败血波氏杆菌疫苗对犬在接种疫苗 13 个月后进行攻击时的有效性。 方法 两组约八周大的小猎犬分别接种 1 ml 安慰剂疫苗(口服,n=17)或 1 ml Recombitek 口服博德特氏杆菌疫苗(口服,n=17)。接种疫苗 13 个月后,两组均通过雾化方式用毒性强的支气管败血波氏杆菌进行攻击。结果 安慰剂组 17 只狗中有 13 只(76.5%)出现连续两天或两天以上的自发性咳嗽(疾病病例定义),而 Recombitek 口服博德特氏菌疫苗组没有狗出现(0.0%)。Recombitek 口服博德特氏菌组的狗患病率明显较低,预防率为 1(100% 预防)。此外,接种 Recombitek 口服博德特氏菌疫苗的狗咳嗽天数、咳嗽持续时间以及气管和鼻腔排毒率明显较低。结论 研究表明,与接种安慰剂的狗相比,接种 Recombitek 口服博德特氏菌疫苗可有效预防疾病,并在接种 13 个月后减少排毒。
Mg 合金的粉末床熔合 - 激光束 (PBF-LB) 为生产具有优化设计的复杂结构提供了新的可能性,既可用于减轻航空航天应用中的重量,也可用于骨科应用中针对特定患者的植入物。然而,尽管已经对该主题进行了大量研究,但各个 PBF-LB 工艺参数对 Mg 合金微观结构和由此产生的材料性能的影响仍然不明确。因此,本研究旨在研究激光功率对表面粗糙度、微观结构和由此产生的关键材料性能(即耐腐蚀性和机械性能)的影响。样品由气雾化的 Mg-4%Y-3%Nd-0.5%Zr(WE43)合金粉末通过 PBF-LB 制成,使用三种不同的激光功率:60 W、80 W 和 90 W。与预期相反,90 W 样品的降解率最高,而 60 W 样品的降解率最低,尽管后者的表面粗糙度最高且内部孔隙较大。相反,发现 90 W 样品的较高降解率源于近表面微观结构。较高的能量输入和随之而来的晶粒尺寸减小,导致第二相沉淀物的数量比 60 W 样品增加,从而增加了通过微电偶腐蚀发生点蚀的趋势。对于拉伸强度和断裂伸长率,观察到了相反的趋势。在这里,发现 90 W 样品的晶粒尺寸减小和沉淀物增加是有益的。总之,观察到激光功率对微观结构的形成有一定影响,最终影响 WE43 的腐蚀和拉伸性能。未来的工作应该研究其他 PBF-LB 工艺参数的影响,以期在耐腐蚀和机械性能之间建立最佳平衡。