MAD 0330 B1 2 0.10 3.1 0.12 3.0 0.15 3.1 0.27 2.7 - - 3 0.05 3.7 0.10 3.1 0.12 3 .6 0.20 3.7 0.32 2.9 4 0.02 4.7 0.05 4.8 0.08 4.4 0.18 4.4 0.25 4.2 5 - - 0.02 5.3 0.05 5.3 0.13 5.5 0.22 5.2 6 - - - - 0.02 6.1 0.12 6.0 0.18 5.8 MAD 0801 B1 2 0.23 2.7 0.28 2.9 0.37 2.7 0.72 2.2 - - 3 0.22 3.6 0.27 3.6 0.32 3.5 0.52 3, 2 0.82 2.7 4 0.18 4.5 0.22 4.4 0.28 4.6 0.45 4.6 0.62 4.7 5 0.12 5.4 0.18 5.3 0.25 5.6 0.40 5.4 0.53 5.4 6 0.07 6.2 0.13 6.3 0.22 6.2 0.35 6.3 0.50 6.2 摩洛哥迪 1131 B1 2 0.50 7.3 0.60 6.6 0.73 6.9 1.15 5.6 - - 3 0.40 9.7 0.50 9.5 0.65 9.4 0.96 9.3 1.35 7.9 4 0.27 11.6 0.37 11.9 0.55 11.8 0.93 12.1 1.20 11.5 5 0.13 13.9 0.23 13.8 0.38 14.0 0.87 14.1 1.15 13.8 6 0.07 18.6 0.13 18.7 0.27 8.7 0.72 18.9 1.10 19.0 MAL 0800 B1 2 0.18 2.7 0.23 2.7 0.32 2.9 0.73 2.1 - - 3 0.15 3.7 0.18 3.9 0 .25 3.5 0.50 3.7 0.85 2.6 4 0.10 4.5 0.17 4.6 0.22 4.9 0.33 4.8 0.53 4.4 5 0.03 5.4 0.10 5.6 0.18 5.4 0.30 5.4 0 .45 5.3 6 - - 0.03 6.2 0.12 6.3 0.27 6.2 0.38 6.3 MAL 1130 B1 2 0.46 7.3 0.52 7.2 0.68 6.8 1.13 5.7 - - 3 0.38 9.5 0.47 9.7 0 .65 10.2 0.95 9.4 1.27 7.7 4 0.23 11.8 0.35 11.8 0.50 11.9 0.88 12.1 1.15 11.8 5 0.13 13.5 0.23 13.9 0.37 14.0 0.82 14.1 1 .10 14.2 6 0.07 16.0 0.13 16.2 0.27 16.2 0.63 16.2 1.03 16.3 MAL 1300 B1 2 0.95 14.6 1.12 16.5 1.40 16.3 2.42 10.4 - - 3 0 .80 19.3 1.00 20.0 1.26 22.2 1.90 19.2 2.87 14.5 4 0.60 24.7 0.80 24.7 1.08 25.0 1.80 25.0 2.40 23.2 5 0.42 29.9 0.60 30.3 0.90 30.4 1.70 30.5 2.27 29.9 6 0.23 35.6 0.40 36.0 0.67 35.6 1.55 36.2 2.15 35.2
肺不张,即肺组织塌陷,是外科手术后(尤其是胸腔或腹部手术)的一个严重并发症。雾化器疗法已成为术后肺不张的潜在辅助治疗方法,旨在改善肺扩张、粘液纤毛清除和患者预后。这篇叙述性综述全面分析了雾化器疗法在术后肺不张管理中的作用,涵盖了其作用机制、临床效果、安全注意事项、挑战和未来前景。这篇综述重点介绍了术后肺不张的病理生理学,强调了麻醉引起的通气不足、功能残气量丧失、粘液纤毛清除受损和气道阻塞。它讨论了雾化器疗法在将药物(如支气管扩张剂、粘液溶解剂和吸入性皮质类固醇)直接输送到气道以缓解肺不张相关症状和促进肺再扩张方面的作用。本文讨论了安全考虑因素,包括支气管痉挛风险、感染控制、药物相关不良反应和环境危害。此外,本文还探讨了患者管理策略、雾化器治疗的挑战和局限性、雾化器类型的比较分析以及特殊人群考虑因素。未来前景将重点关注个性化治疗、新型药物配方、智能雾化器设备和靶向治疗,以优化肺不张管理。总之,虽然雾化器治疗在治疗肺不张方面表现出疗效,但技术和治疗策略的不断进步为克服挑战和改善治疗结果提供了机会,最终提高了患者护理和生活质量。
新开发的高输出 BLAM 雾化器采用了 Collison 雾化器的喷射雾化原理,该原理长期以来一直被公认为高效雾化各种液体的技术。然而,BLAM 依赖于一种新的、正在申请专利的设计,这种设计比 Collison 或其他现有设备更高效地生成气溶胶,无论是在单程配置还是再循环配置中。这种创新设计允许用户以高颗粒浓度和非常窄的颗粒尺寸分布产生液体气溶胶。BLAM 可用作现有 Collison 型雾化器的改装件。改装套件包装为许多 Collison 雾化器的直接喷嘴替代品。
9. 如果参与者需要雾化器协助,并且居住在住宅护理机构/辅助生活设施 (RCF/ALF) 内,是否可以授权执行此任务?答:这是基本个人护理 (PC) 自行用药下允许的授权任务。如政策 3.20 所述,将药物(包括雾化器药物)带给参与者,以便参与者可以自行用药,这被视为为此目的授权单位的适当行为。助手可以携带和设置设备、打开药物包装、将药物放入雾化器(仅限预包装)、在治疗过程中稳定参与者的手并根据需要清洁设备。启动机器必须由参与者执行,因为这构成了药物管理。无论服务设置如何,都适用相同的参数。
艾姆斯国家实验室与林德先进材料技术公司(前身为普莱克斯表面技术公司)之间的长期合作继续推动工业增材制造的发展。林德最近授权了七项艾姆斯实验室专利,这些专利与一种制造金属合金粉末的新型低成本方法有关。这些粉末可用于制造比使用其他制造方法制造的材料更能承受高温环境的结构部件。自 2019 年以来,林德已与艾姆斯实验室在多个项目上展开合作。这一合作始于普莱克斯和艾姆斯实验室的研究人员通过技术商业化基金项目改进了实验室的紧耦合气体雾化模具技术。最近,林德与艾姆斯实验室合作,通过 HPC4EI 奖优化其雾化器设计和操作。艾姆斯实验室的研究人员利用他们在 2D 和 3D 计算流体动力学建模方面的专业知识来研究雾化器。
微量金属对所有生物体的生长都至关重要。了解这些微量金属在新陈代谢中的作用对于维持生物体的稳定状态至关重要。此外,由于各种污染,人类还面临着各种有害重金属的不断接触。总的来说,这些方面导致了分析技术领域的研究和发展,这些技术可以帮助确定我们细胞中这些微量金属的含量。电感耦合等离子体质谱 (ICP-MS) 是一种分析技术,用于分析各种样品(包括生物样品)中的元素组成。近年来,单细胞 ICP-MS (scICP-MS) 技术已广泛应用于医学和生物领域,用于分析细菌、真菌、微生物、植物和哺乳动物中的单个活细胞。scICP-MS 的样品引入系统由传统的气动雾化器和总消耗喷雾室组成。气动雾化器将样品(细胞悬浮液)液体转化为雾气。虽然使用雾化器的传统 scICP-MS 分析对于酵母细胞的传输效率达到 10%,但由于哺乳动物细胞的脆弱性,它无法用于哺乳动物细胞。众所周知,化学固定可以增强哺乳动物细胞的强度,但它会极大地影响元素含量,导致分析不准确。因此,需要开发一种不会对哺乳动物细胞造成任何损害的样品引入系统。为此,来自日本的一组研究人员现已证明微滴发生器 (µDG) 作为样品引入系统的潜力,可用于高效定量分析哺乳动物细胞的元素。该团队由日本千叶大学药学研究生院的助理教授 Yu-ki Tanaka 以及 Hinano Katayama 女士、Risako Iida 女士和 Yasumitsu Ogra 教授组成,他们将 µDG 引入 ICP-MS 的样品引入系统,表明该系统能够准确地进行元素分析。他们的研究成果于 2024 年 12 月 2 日发表在《分析原子光谱杂志》第 40 卷上。Tanaka 博士进一步阐述道:“到目前为止,scICP-MS 已应用于细菌、真菌、植物细胞和红细胞。我们将 scICP-MS 技术的潜力扩展到哺乳动物培养细胞,开发了一种用于测量哺乳动物培养细胞中元素含量的强大分析技术。”在研究中,研究人员使用了两种样品引入系统进行颗粒和细胞样品分析。第一个是传统系统,包括同心玻璃雾化器和总消耗喷雾室。另一个系统包括插入制造的 T 形玻璃管道中的 µDG,玻璃管的一端连接全消耗雾化室,另一端连接ICP炬管。研究人员发现,使用µDG后,细胞运输效率大幅提高。此外,他们还估算了K562细胞(也称为人类慢性粒细胞白血病K562细胞)中的镁、铁、磷、硫和锌,发现µDG保持了细胞的原始结构,而传统系统通常会改变细胞的结构。因此,它非常适合单细胞元素分析,因为它不会影响细胞的结构,从而可以高效地检测细胞。“我们的