需求预测是一项重要活动,它直接影响供应链的运作,为决策提供了坚实的基础。运营策略长期以来一直专注于需求预测,以更好地管理库存并最大限度地提高客户满意度。然而,大多数需求预测方法都无法向企业揭示任何信息,因为它们没有考虑到产品的季节性、当前的市场趋势,或者预测如何影响牛鞭效应。迫切需要建立能够智能、快速地检查供应链中大量数据的技术。大数据可以帮助企业解决他们的问题。同时,模糊逻辑模型有助于在缺乏历史数据、主观消费者偏好或不可预测的市场环境的情况下捕捉和管理不确定性。因此,本文提出了一种基于模糊逻辑的大数据驱动需求预测框架 (FL-BDDF),该框架确定促销营销工作、过去的需求和其他变量在做出预测方面的作用,这些预测可以塑造、感知和响应实际消费者需求。借助大数据分析 (BDA),企业可以提高需求预测的准确性。模糊逻辑让它们包括定性指标,如市场情绪、专家观点或主观风险评估以及典型的定量信息。运营和供应链管理 (OSCM) 与其他领域一样,提供了实时创建大量数据的机会。这项研究的结果可能有助于学术界和行业专业人士更好地掌握大数据为 SCM 和需求预测提供的可能性。实验结果表明,与其他现有模型相比,建议的 FL-BDDF 模型将准确率提高了 98.4%,供应链预测率提高了 97.3%,客户满意度提高了 95.4%,成本降低了 57%。关键词:供应链管理、模糊逻辑、大数据、需求预测、数据驱动。
此处列出的合同主要是定期服务合同。出于规划目的,您可以估计在合同到期前 24-36 个月内,有关任何计划重新收购这些合同的信息将在 SAM.gov 上发布。如果拟议的重新收购将根据现有合同的条款进行,则信息将发布到该特定合同的适当场所。
地月空间中的系统无法从地球磁场对高能重离子的屏蔽中获益。• 地月空间中的单粒子效应 (SEE) 率和位移损伤剂量 (DDD) 水平明显高于低地球轨道
准确的需求预测是有效库存管理的基础,是供应链效率的基石。通过精确预测未来需求,公司可以保持最佳库存水平,从而降低库存过剩或缺货的风险——这两种情况都会带来严重的财务和运营后果 (Fildes, R., Ma, S., & Kolassa, S. (2019))。库存过剩会导致持有成本增加、产品可能过时和资源浪费,而缺货则会导致销售损失、客户关系受损和供应链中断。有效的预测不仅可以确保在正确的时间提供正确数量的库存,还可以通过最大限度地减少浪费和提高资源利用率来实现更可持续的做法。
摘要 能源存储系统将在未来智能电网的建立中发挥关键作用。具体而言,将存储系统集成到电网架构中可以实现多种目的,包括通过增加可再生能源的使用来处理能源供应的统计变化,以及通过负荷调度来优化日常能源使用。本文重点介绍如何使用非线性凸优化来减少电网失真。具体来说,分析存储模型与基于家庭社区社会经济信息的负荷预测技术相结合使用。结果表明,所提出的负荷预测技术可显著减少预测误差(相对减少高达 14.2%),而基于非线性凸优化的所提出的存储优化可使理想存储的峰值与平均值之比降低 12.9%,考虑损耗的存储的峰值与平均值之比降低 9.9%。此外,结果表明,当家庭社区使用储能时,每个家庭的储能规模为 4.6-8.2 kWh,可以实现最大的改进,这显示了共享储能的有效性以及家庭社区的负荷预测。
住宅和商业建筑的设计和建设是全球能源密集型的活动之一。建筑物占总能源使用量的20%至40%[1]。根据欧盟(EU)[2],城市建筑占全球能源消耗的40%和33%的温室气体(GHG)排放量。因此,政府被激励通过减少排放和提高能源效率来解决增加能源消耗,同时确保建立居民的舒适度[3]。为了减少能源消耗,欧洲委员会(EC)提出了2030年的几乎零能量建筑(NZEB)[3]。图1说明了基于家庭能量计算器(HEC)的数据[4]的CO 2排放和成本的能量减少的重要性。图给出了英国(英国)大学管理的全面问卷的结果。研究参与者被随机分配了HEC的三个版本之一,该版本在千瓦时内提供了能源消耗。响应由两位独立审稿人主题编码,导致五个不同的类别:与能源有关,成本,环境,成本和环境的结合以及“不值得”,表明缺乏减少能源使用的动机等。需求预测的策略(DP)[5]是EC推荐的解决能源消耗的解决方案之一[6,7]。这些策略包括基于价格的需求响应(DR),基于激励的DR,基于时间的DR,Automated DR和基于容量的DR。智能和绿色建筑物(SGB)。但是,DP面临着实施挑战,例如操作和技术限制,以及数据可用性和准确性问题[8]。已经提出了解决这些挑战的机器学习(ML)方法[8,9]。在现代能源管理中,通常采用优化技术来降低能耗和/或成本。本文考虑了ML方法,考虑了其部署,准确性,成本和效率,例如现代建筑物(MBS),例如本文的其余部分的结构如下。第2节介绍了当前的ML方法及其应用。第3节提供了用于预测建筑能源和相关数据集的ML技术的综述。最后,第4节提供了一些结论性的评论。
欧洲疫苗协会成员公司致力于满足欧洲公民和世界公民的公共卫生需求。要在需求增加和供应受限的情况下确保疫苗供应,就必须有一个强大的行业在稳定的环境中运作,能够生产出最高质量的疫苗并进行创新以满足未来的疫苗需求。供需双方需要保持平衡,以确保健康的疫苗生态系统。如果安装的产能过大,产能过剩的固定成本会增加每剂疫苗的生产成本。相反,供应低于需求会导致短缺,这可能会影响公共卫生。所有主要的欧洲疫苗制造商都是全球供应商,其目标是尽可能满足全球需求。因此,长期准确预测全球疫苗需求是成功推出新疫苗或确保现有疫苗供应充足的重要因素,尤其是在复杂且受到严格监管的环境中。
住宅和商业建筑的设计和建设是全球能源密集型的活动之一。建筑物占总能源使用量的20%至40%[1]。根据欧盟(EU)[2],城市建筑占全球能源消耗的40%和33%的温室气体(GHG)排放量。因此,政府被激励通过减少排放和提高能源效率来解决增加的能源消耗,同时确保建立居民的舒适度[3]。为了减少能源消耗,欧洲委员会(EC)提出了2030年的几乎零能量建筑(NZEB)[3]。图1说明了基于家庭能量计算器(HECS)的数据,CO 2排放和成本的能量降低的重要性[4]。该数字给出了英国(英国)大学管理的综合问卷的结果。研究参与者被随机分配了HEC的三个版本之一,该版本在千瓦时内提供了能源消耗。回答由两位独立审稿人主题编码,导致五个不同的类别:与能源相关,成本,环境,成本和环境的结合以及“不值得”,表明缺乏减少能源使用的动机等。需求预测的策略(DP)[5]是EC推荐的解决能源消耗的解决方案之一[6,7]。这些策略包括基于价格的需求响应(DR),基于激励的DR,基于时间的DR,Automated DR和基于容量的DR。智能和绿色建筑物(SGB)。但是,DP面临着实施挑战,例如操作和技术限制,以及数据可用性和准确性问题[8]。已经提出了解决这些挑战的机器学习(ML)方法[8,9]。在现代能源管理中,通常采用优化技术来降低能耗和/或成本。本文考虑了ML方法考虑了其部署,准确性,成本和效率(MBS),例如本文的其余部分的结构如下。第2节介绍了当前的ML方法及其应用。第3节提供了用于预测建筑能源和相关数据集的ML技术的综述。最后,第4节提供了一些结论性的评论。
人工智能(AI)的出现已经迎来了各个行业的效率和准确性的新时代,库存管理和需求预测处于这些进步的最前沿。传统库存管理技术通常依赖于历史数据和简单的统计模型,在解决当代市场的动态和复杂性方面缺乏(Chopra&Meindl,2016年)。AI具有先进的算法和机器学习能力,为这些关键业务功能提供了一种变革性的方法。本文探讨了AI技术在优化库存管理和预测客户需求方面的集成。AI增强库存管理涉及应用各种AI技术,例如机器学习,自然语言处理(NLP),计算机视觉和机器人技术工艺自动化(RPA)(RPA)(Ivanov等,2017)。机器学习算法分析了大量的历史数据,以识别模式和趋势,从而可以在库存水平上进行更准确的预测和调整。NLP流程从社交媒体和客户评论等来源提供非结构化数据,以更深入了解市场趋势和客户偏好(Cambria&White,2014年)。计算机视觉技术有助于实时监视库存水平并通过视觉数据识别差异,而RPA自动化了重复的任务,例如订单处理和库存跟踪,从而降低了人为错误和提高效率(Aguirre&Rodriguez,2017年)。本文重点介绍了通过AI实施实现的预测准确性和库存周转率的重大改善,并讨论了对供应链管理的未来影响。