CO 2捕获,利用和存储(CCUS)技术是减轻温室气体排放的最有效的方法,吸引了全球相当大的关注。1,2 CCUS技术基于二氧化碳的捕获和分离。3要实现捕获和隔离二氧化碳的目的,膜分离已成为普遍的方法。该技术允许通过二氧化碳和膜之间的物理或化学相互作用选择性渗透二氧化碳。研究二氧化碳膜分离方法的研究围绕高效率膜的制备和获取。目前,经过广泛研究的CO 2分离膜包括无机,有机和新兴膜。无机膜主要由二氧化硅,沸石和石墨烯膜组成。有机膜包括纤维素,聚酰胺,多硫酮和聚醚膜。新兴膜包括复合材料,金属 - 有机框架(MOF),Zeolitic imidazo-late Framework(ZIF),碳分子筛(CMS),固有微孔(PIM)的聚合物(PIM)和促进的运输膜。具有低能消耗和高分离效率的显着优势,膜分离方法正在迅速出现,因为二氧化碳捕获和分离的全球前进技术。4
图1:Nafion N117(A,C)的电导率(A,B)和电解质质量分数(C,D)和烟雾E-620(B,D)在NaOH或KOH电解质中浸泡在Select浓度(MOH IN MOH代表Na或K)处的膜。在表S2和S3中将相应的数据表列出。
从介电常数和绝缘破坏电场强度的观点出发选择Al 2 O 3 、HfO 2 、SiO 2 。使用这些绝缘膜制作MOS结构样品,并评估绝缘膜的介电击穿场强和介电常数。为了进行评估,我们使用了新推出的浸入式手动探测器。在该评价中,HfO 2 膜表现出最高的介电常数和击穿电场强度。通过简单的器件模拟,发现如果该膜具有这种水平的特性,则它可以用作氧化镓MOSFET的栅极绝缘膜。因此,在本研究中,我们决定使用该HfO 2 薄膜进行MOSFET的开发。由于不仅需要从初始特性而且还需要从长期可靠性的角度来选择绝缘膜,因此我们还考虑了具有第二好的特性的Al 2 O 3 膜作为候选材料I。取得了进展。 2020财年,我们改进了栅极绝缘膜的材料选择和成膜条件。具体地,对于作为栅极绝缘膜的候选的Al 2 O 3 ,为了减少作为沟道电阻增大的因素的栅极绝缘膜/氧化镓界面处的电荷,将Al 2 O 3 /镓我们考虑在成膜后通过热处理去除氧化物界面。图3示出了(a)评价中使用的MOS结构的截面图和(b)界面态密度分布。确认了通过在N 2 气氛中在450℃下热处理10分钟,可以形成界面能级为1×10 12 eV -1 cm -2 以下的良好界面。可知当温度进一步上升至550℃、650℃、800℃时,产生10 12 eV -1 cm -2 量级的界面态并劣化。通过本研究,我们获得了构建晶体管基本工艺过程中的热处理温度的基本数据。
胆固醇液晶(CLC)相。[1] CLC相的最引人注目的特征是由于光的选择性反射,其异常的光旋转功率和结构颜色。[2]结构颜色是光干扰现象的结果,例如由周期性纳米结构引起的Bragg反射和棒状分子的平均折射率。CLC的初始缺口位置可以通过公式λ0= n×p 0表示,其中λ0是初始缺口位置,n是平均折射率,P 0是初始音高长度。[3]自然采用了这种螺旋纳米结构,向花瓣,蝴蝶翅和甲虫的表皮提供各种颜色信息。[4]灵感来自此类天然光子纳米结构,许多研究人员使用光子晶体,等离子体纳米结构和元素制造人造结构颜色。[5]这些天然螺旋纳米结构的实例和人造结构颜色的研究已用于设计具有先进功能的材料,例如在光学传感,伪装和反伪造技术中使用的材料。[6]
带有2D材料的膜表面涂层已显示出用于水处理应用的防婚特性。但是,目前基于真空过滤的合成方法不容易缩放。本研究描述了一种可扩展的方法,可用于涂层膜,包括氧化石墨烯(GO),六边形硝酸氢硼(HBN),二硫化钼(MOS 2)和二硫化钨(WS 2)。使用含氧剂将含有每类2D薄片的异丙基醇溶液喷涂到商业聚偏氟化物(PVDF)上。纳米材料用聚多巴胺(PDA)作为一个可以轻松地集成到可扩展的滚动过程中的方法中的交联。使用扫描电子显微镜,原子力显微镜,接触角,拉伸强度测量和傅立叶转换红外光谱法评估了形态,表面粗糙度,疏水性,机械耐用性和化学组成的变化。在72 h的膜蒸馏(MD)实验中测试了2D纳米材料涂层的膜,并将其与原始的PVDF和PDA/PVDF膜进行了比较。使用高浓度的腐殖酸(150 ppm)和石蜡油(200 ppm)的盐排斥和MD性能稳定性评估,从而模拟了从油气萃取中模拟简单的有机废水。通量下降比以每小时渗透率损失百分比(%/h)来衡量,以便将来与不同的实验时间进行比较。所有膜的盐分排斥很高(> 99.9%)。原始的PVDF膜在10小时后因结垢而导致孔隙润湿失败,而PDA/PVDF膜的通量下降率最大(0.3%/小时)。涂有GO和HBN的膜的通量下降比较低(分别为0.0021±0.005和0.028±0.01%/h)。Go涂层的膜是唯一能够治疗含有表面活性剂和含有污垢的饲料的膜类型。改进的性能归因于表面粗糙度和疏水性的降低,这降低了污垢表面上的污垢吸附。这项工作显示了一种可延展的可扩展方法来克服MD中的犯规限制。
阴离子交换膜燃料电池 (AEMFC) 是质子交换膜燃料电池 (PEMFC) 的一种经济高效的替代品。高性能耐用的 AEMFC 的开发需要高导电性和坚固的阴离子交换膜 (AEM)。然而,AEM 通常在导电性和尺寸稳定性之间表现出权衡。本文报道了一种氟化策略,用于在聚(芳基哌啶)AEM 中创建相分离的形态结构。高度疏水的全氟烷基侧链增强了相分离,从而构建了用于阴离子传输的互连亲水通道。因此,这些氟化 PAP (FPAP) AEM 同时具有高电导率(80°C 时 > 150 mS cm − 1)和高尺寸稳定性(80°C 时溶胀率 < 20%)、优异的机械性能(拉伸强度 > 80 MPa 和断裂伸长率 > 40%)和化学稳定性(80°C 时在 3 m KOH 中 > 2000 小时)。使用本 FPAP AEM 的具有非贵重 Co-Mn 尖晶石阴极的 AEMFC 实现了 1.31 W cm − 2 的出色峰值功率密度。在 0.2 A cm − 2 的恒定电流密度下,AEM 在燃料电池运行 500 小时后保持稳定。
截至 2021 年 5 月,印度新冠疫情卷土重来,已蔓延至该地区的农村人口和其他国家。这场疫情凸显了印度长期以来对全民健康覆盖 (UHC) 的需求。2020 年 12 月,柳叶刀公民委员会成立,旨在通过参与式、解决方案驱动的方法,规划未来十年实现全民健康覆盖的路径。1 然而,目前,印度面临着拯救生命和减少痛苦的紧急状况。我们代表柳叶刀公民委员会,向共同承担印度人民健康责任的中央和州政府提出八项建议。我们的建议是对 Kuppalli 及其同事呼吁国际社会采取行动的建议的补充。2 我们提出这些建议的目的是扩大和综合必须紧急采取的行动,其中一些建议最近已被该国权威人士提出。3
研究图书馆集团 (RLG) 是一个由大学和学院、国家图书馆、档案馆、历史学会、博物馆、独立研究馆藏和公共图书馆组成的国际联盟。其使命是“改善对支持研究和学习的信息的访问”——通过协作活动和服务,包括组织和保存以及共享信息资源。1998 年初,RLG 资助了 Margaret Hedstrom 博士和 Sheon Montgomery 女士对其成员机构的数字存档状态进行研究。主要目的是评估哪些地方需要指导、教育和培训、存储和数字保存服务,以便开发满足成员需求的培训类型、资源共享机制和服务。
DTaP-IPV-Hib:白喉、破伤风、百日咳、脊髓灰质炎、b 型流感病毒 Pneu-C-15:肺炎球菌结合疫苗 15 Rot-1:轮状病毒 Men-CC:脑膜炎球菌结合疫苗 C MMR:麻疹、腮腺炎、风疹 Var:水痘(2010 年或以后出生者必须接种) MMRV:麻疹、腮腺炎、风疹、水痘 Tdap-IPV:破伤风、白喉、百日咳、脊髓灰质炎 HB:乙型肝炎 HPV-9:人乳头瘤病毒 Men-C-ACYW:脑膜炎球菌结合疫苗 ACYW-135 Tdap:破伤风、白喉、百日咳 RSV:呼吸道合胞病毒 Pneu-P-20:肺炎球菌多糖 20 HZ:带状疱疹(65-70)
