1个纳米技术小组,用户 - 纳米纳布,萨拉曼卡大学,萨拉曼卡大学,塞拉梅尔广场,特林里奇建筑,37008,西班牙萨拉曼卡2加州纳米科学和纳米技术研究所,CSIC和BISTI,BISTI,BISTI,BERCUS UAB,UAB,BELLATERRA,BELLATERRA,0893 BATITA,SPINES,FITIS,FINE,弗里,FINE,393 BARCEN,FINE,FINE,FINE,FINE,FINE,林库,FINE,FINE,FINE,3。 24210-346 NITITIROI RJ,巴西4 GISC,DeFísicade Carteres,Cromputense大学,28040,西班牙马德里,55040,加利福尼亚州伯克利大学,加利福尼亚大学94720,美国64720,美国6材料科学司,伯克利国家实验室,伯克利材料机构,美国64777777777770年7月7日科学,1-1 Namiki,Tsukuba,305-0044,日本8国际材料纳米级核库中心,国家材料科学研究所,1-1 Namiki,Tsukub,Tsukub 305-0044,日本9.日本9. Avançats,08010巴塞罗那,西班牙11号Minho和Porto University(CF-HUM-UP),Braga,Braga,葡萄牙12 InstitutodeFísicaInstitutodeFísica,联邦联邦政府Rio De Janeiro,C.P。68528,21941-972里约热内卢RJ,巴西
客户满意度、创新、灵活性和高品质是 LINSEIS 的代表。凭借这些基本原则,我们公司在领先的科学和工业组织中享有卓越的声誉。多年来,LINSEIS 一直提供高度创新的基准产品。LINSEIS 热分析业务部门涉及用于研发和质量控制的全系列热分析设备。我们支持聚合物、化学工业、无机建筑材料和环境分析等领域的应用。此外,还可以分析固体、液体和熔体的热物理性质。LINSEIS 植根于强大的家族传统,自豪地传承到第三代,保持了其核心价值观和对卓越的承诺,这些价值观和承诺已在家族领导层中传承下来。这种世代相传加强了我们对创新和质量的奉献精神,体现了真正的家族企业的精髓。LINSEIS 提供技术领导地位。我们按照最高标准和精度开发和制造热分析和热物理测试设备。由于我们的创新动力和精度,我们是热分析设备的领先制造商。热分析测试机的开发需要大量研究和高精度。LINSEIS 公司投资于这项研究,以造福我们的客户。
流量传感器(数字)................................................................................................................ 63 排序传感器............................................................................................................................... 63 接近传感器............................................................................................................................... 64 办公机器传感器....................................................................................................................... 64 可调电流传感器....................................................................................................................... 65 线性反馈传感器....................................................................................................................... 66 多位置传感器.................................................................................................................... 66 微处理器控制传感器.................................................................................................................... 67 防滑传感器.................................................................................................................................... 67 门联锁和点火传感器............................................................................................................. 67 变速箱安装速度传感器............................................................................................................. 68 曲轴位置或速度
Cubesats(也称为Microsats或纳米卫星)是微型卫星。他们为大学,研究人员和私营部门公司提供了前所未有的访问低地球轨道空间勘探能力的机会,曾经仅保留给政府太空机构。尽管尺寸较小,但发现了立方体的监视和诊断能力,可有效地支持许多传统的空间探索研发要求,而费用的一小部分。右侧是典型的立方体设计。
引文:关于物理学中拓扑和对称性的新思想,预测了一种只在表面导电的新材料。描述:自本·富兰克林时代以来,我们就开始区分导电和绝缘的电形式。但查尔斯·凯恩和吉恩·梅勒颠覆了这一概念,他们预测了一种新材料——“拓扑绝缘体”,这种材料在边界上是不可侵犯的电导体,但在内部是绝缘体。他们的发现对量子计算的“太空竞赛”具有重要意义,并可能导致新一代电子设备的出现,从而有望在计算中实现巨大的能源效率。拓扑绝缘体还为深入探究物质和能量的基本性质提供了一个窗口,因为它们表现出类似于物理学基本粒子(电子和光子)的粒子状激发,但可以在实验室中以电子和光子无法控制的方式进行控制。这些连接为控制各种物质状态下的电荷、光甚至机械波的流动提供了一个新的概念框架。意想不到的应用似乎也是不可避免的:当晶体管于 1947 年发明时,没有人能够真正预测到它将带来信息技术,使 TB 级的数据能够塞进一个微小的硅片上。
2019 年 5 月 20 日,全球庆祝了世界计量日,这反映了国际单位制 (SI) 的历史性变革。在建立新 SI 时,世界各国政府计量界的代表与国际度量衡委员会 (CIPM) 决定,所有计量单位都应可追溯到自然界的基本常数。七个基本单位现在与七个固定值相关联,其中四个已被修改为表示精确值:普朗克常数 ( h )、基本电荷 ( e )、玻尔兹曼常数 ( k B ) 和阿伏伽德罗常数 ( N A )。常数 h 和 e 的变化对欧姆、伏特和安培等电学单位的定义有直接影响。在量子霍尔效应 (QHE) 的背景下,冯·克利青常数从 1990 年设定的常规值 ( R K-90 = 25 812.807 Ω) 变为了最新科学得出的 h/e 2 值 ( R K = 25 812.807 459 304 5 Ω)。
摘要 — 在本文中,我们开发了计算模型来分析集成磁集中器 (IMC) 对周围外部磁场的磁集中效应。我们提出了一种基于 IMC 的三轴霍尔传感器模型,该模型可以测量随机外部磁场的倾斜角度和绝对强度。IMC 将周围的平行磁性元件更改为垂直元件,因此允许水平霍尔板测量平行外部磁场的强度和倾斜角度。我们在 COMSOL Multiphysics 中为三轴霍尔传感器开发了一个基于有限元法 (FEM) 的模型。使用开发的模型研究和讨论了影响 IMC 磁集中效应的关键因素,包括材料特性和传感器结构。与传统的基于 IMC 的三轴角度传感器相比,传感器中不再需要参考永磁体。对于外部磁场的 α 和 θ 角,测量精度分别达到 0.8 度和 1.2 度。
高阶霍尔效应超出了普通的效果,解锁了电子传输特性和功能的更多可能性。先驱工作的重点是制造具有低晶格对称性的复杂纳米结构以生产它们。在本文中,我们从理论上表明,可以通过弯曲导电纳米膜来产生这种高阶霍尔效应,该纳米膜高度可调,也可以使各向异性呈各向异性。可以通过简单地改变施加的磁场的方向和幅度来调整其HALL响应。主要的霍尔电流频率也可以从零变为两倍,甚至可以更改为四倍的交替电场。这种现象严重取决于与弯曲几何形状引起的有效磁场偶极子和四极管相关的高阶蛇轨道的发生。我们的结果为弯曲导电纳米膜的空间工程磁通频率,当前的直流和频率乘法提供了途径。
因此与磁场成正比。异常霍尔效应 (AHE) 与铁磁体中的磁化有关,磁化通常源于动量空间中的 Berry 相。[3] 然而,发现一种新型霍尔效应既不依赖于磁场也不依赖于磁化。它起源于标量自旋手性 χ ijk = S i × ( S j × S k ),由非共面或非共线自旋配置(例如螺旋、畴壁或 skyrmion)产生。[3,5,6] 当传导电子穿过非共面自旋结构时,会在实空间中产生量子力学 Berry 相,并与虚拟磁场相关。该场是这种特殊霍尔效应的起源,称为拓扑霍尔效应 (THE)。 [3] 在大多数情况下,THE 的形成是由非零的 Dzyaloshinskii–Moriya 相互作用 (DMI) 驱动的,这需要强自旋轨道耦合 (SOC) 的存在和反演对称性的破坏。因此,由 skyrmions 诱导的 THE 首次在非中心对称的 B20 化合物(如 MnSi、MnGe 和 FeGe)中观察到。[7–10] 由于拓扑自旋的存在,THE
拓扑绝缘子的边缘状态可用于探索低维和拓扑界面上出现的基本科学。实现可靠的电导量化已被证明对螺旋边缘状态具有挑战性。在这里,我们在扭结状态下显示了宽的电阻平台 - 伯纳尔双层石墨烯中量子谷霍尔效应的表现 - 量化为零磁场处的预测值。高原耐药性的温度依赖性非常弱,高达50 kelvin,并且在数十MV的直流偏置窗口内是平坦的。我们演示了拓扑控制开关的电气操作,开/关比为200。这些结果证明了扭结状态的鲁棒性和可调性及其在构建电子量子光学设备方面的承诺。