我们提出一个离散的信息基底作为基础层,时空结构、标准模型规范对称性、黑洞熵、全息对偶性和综合复杂性度量由此产生。我们将基底构建为具有明确定义的局部更新规则的四维晶格系统。通过使用重正化群 (RG) 分析系统,我们证明了洛伦兹不变性可以在低能量下出现。通过将基态表示为张量网络,我们将出现的大尺度几何连接到全息对偶,从而重现纠缠熵的 Ryu-Takayanagi 公式。离散视界上的组合微态计数得出贝肯斯坦-霍金黑洞熵定律。此外,我们定义了一个与综合信息理论的 Φ 一致的综合复杂性度量,将复杂性定义为底层因果结构的突发属性。特殊极限重现了已知的理论,例如圈量子引力 (LQG) 和因果集理论,强调这些框架是更基本基础的涌现现象。最后,我们讨论了哥德尔不可判定性和认识论极限,它们是复杂的涌现行为的自然结果。这项工作将涌现定位为将基础物理学的多个方面编织在一起的统一概念。
思想领袖,例如斯蒂芬·霍金(Stephen Hawking),埃隆·马斯克(Elon Musk)和比尔·盖茨(Bill Gates),警告世界上人工智能的潜在危险,而不是人类控制。AI是否可以演变成科幻小说的噩梦,可以肯定的是,IT和其他未来技术(例如,机器人技术,合成生物学,计算科学,计算科学,纳米技术,量子计算,3D和4D印刷,互联网印刷,认知科学,人类智能,人类智能,驱动器,自我驱动器,自我驱动器,驾驶的自我驱动器,驾驶汽车我们认为在接下来的几十年中是可能的,但它们也可能导致大量失业。财富集中在增加。收入差距正在扩大。失业经济增长似乎是新的规范。资本和技术投资回报率通常比劳动力更好。未来的技术可以取代大部分人工劳动。长期结构性失业是一种惯常的预测。那么我们该怎么办?千年项目开始了多年的国际评估,以了解我们可以做什么:未来工作/技术2050研究在三年内有七个阶段:
量子信息是一个引人入胜的主题,具有彻底改变我们对宇宙的理解的能力,并且已将其作为一种工具来理解在各种不同环境中的相对论现象,例如加速度和黑洞(称为异常和霍金效应)[1,2]。量子纠缠已被用作增强重力波检测器灵敏度的方法。参考文献[3,4]研究了通过收集相互量子相关性并讨论每个光束在干涉仪中传播的方式的差异来消除过滤腔的可行性。参考[5]提出了一种基于量子纠缠的重力波检测的量子速度计测量方案的新实现。除此之外,一些论文原则上研究了受重力波影响的量子特性,包括量子烙印[6],量子时间扩张[7],纠缠收集[8],激发/对单个原子的兴奋/去敏化[9,10]等。在[11]中还研究了重力场对量子纠缠的影响。,但大多数研究都集中在两体纠缠上。在本文中,我们将研究重力波对量子多体态的影响,并讨论实验检测对压力波的可行性。
奇点分辨率、暗物质和暗能量:人们一直期望量子力学能够解决经典时空奇点问题。在最近的一篇论文(Das, Phys. Rev. D89 (2014) 084068)中,人们发现这可以通过一种简单的方式实现:在 Raychaudhuri 方程中用量子(Bohmian)轨迹取代经典测地线(该方程通过霍金-彭罗斯奇点定理预测所有经典测地线都是不完整的,时空是奇异的),并表明这些量子轨迹实际上是完整的。换句话说,自然界中基本粒子的量子轨迹将永远延续下去,永远不会遇到任何奇点。此外,这还产生了一种新的量子势,它转化为弗里德曼方程中的宇宙常数项,而弗里德曼方程控制着我们宇宙的演化。由于对量子波函数有一些合理的假设,即它在大尺度上是均匀和各向同性的,与宇宙学原理一致),并且它代表具有小质量的引力子或轴子的凝聚体,与所有理论和观察一致,然后正确地再现了自然界中观察到的小宇宙常数(暗能量)(Ali,Das,Phys. Lett. B741(2015)276)。我们还计算了这种凝聚体的临界温度
黑洞是时空的暴力尽头。它们产生的悖论挑战了我们当前的物理理论。最引人入胜的谜题涉及广义相对论和量子理论关于黑洞辐射性质的结论之间的差异。这被称为黑洞信息之谜。根据霍金最初的论证,辐射是热的,因此它的熵会随着黑洞的蒸发而单调增加。相反,量子理论中时间演化的可逆性意味着辐射熵应该在佩奇时间之后开始减少,正如佩奇曲线所预测的那样。这种减少已由基于复制技巧的新计算证实,这些计算还揭示了它的几何起源:在复制品之间形成的时空虫洞。造成佩奇曲线的一般机制称为量子极值曲面 (QES) 处方,它由 QES 的相变捕获,该相变根据贝肯斯坦的广义熵来测量纠缠熵。同时,虫洞的存在表明半经典引力实际上需要一系列微观理论。这种整体解释的可能性目前引起了困惑,并激发了积极的讨论。
黑洞信息(丢失)悖论是一个有关黑洞蒸发和演化过程的幺正性难题的问题(见霍金[9],或Chakraborty和Lochan[4]、Harlow[8]、Polchinski[16]和Marolf[10]的评论)。幺正性守恒的假设(尤其是我们的假设)意味着几种一般的情况。例如,可以采用这样的假设(我们也这样做),即信息在黑洞蒸发过程中(以某种方式)逐渐释放。然而,这个观点(显然和其他观点一样)需要某种令人信服的物理机制,或者(在缺乏机制的情况下)至少需要某种可行的信息传输抽象算法。研究该悖论的一个显而易见的方法是,从特定的物理机制中抽象出问题,从量子比特的角度分析问题。在文献中,我们可以找到许多量子比特模型,它们或多或少成功地再现了黑洞演化的各个步骤(例如,参见 Broda [ 2 , 3 ]、Giddings [ 6 , 5 ]、Giddings 和 Shi [ 7 ]、Mathur [ 11 , 12 ]、Mathur 和 Plumberg [ 13 ]、Osuga 和 Page [ 14 ] 或 Avery [ 1 ] 的评论)。不幸的是,在所有这些模型中,因果关系这一重要问题似乎都没有引起应有的重视,因此没有明确排除超光速通信的可能性。与此相反,我们目前的处理方式优先考虑因果关系。更准确地说,在我们的方法中,我们严格控制通过量子比特传输的信息的方向。
经典的霍金宇宙奇点定理 [ 10 ,第 272 页] 证明了空间封闭时空在未来某个阶段会膨胀时存在过去类时间测地线不完备性。该奇点定理要求时空的 Ricci 张量满足强能量条件,即对所有类时间矢量 X ,Ric ( X , X ) ≥ 0。在遵循爱因斯坦方程且具有正宇宙常数 > 0 的时空中,通常不满足此能量条件,因此该结论不一定成立;测地线完备的德西特空间就是一个直接的例子。但这不仅仅是真空时空的特征;具有正宇宙常数的充满尘埃的 FLRW 时空提供了其他例子。对于 [8,第 3 节] 中讨论的 FLRW 模型,共动柯西曲面被假定为紧致的,并且除了时间相关的尺度因子外,曲率均为常数 k = + 1 , 0 , − 1。这三种情况在拓扑上截然不同。例如,在 k = + 1(球面空间)的情况下,柯西曲面具有有限基本群,而在 k = 0 , − 1(环形和双曲 3 流形)的情况下,基本群是无限的。此外,只有在 k = + 1 的情况下,过去大爆炸奇点才可以避免。
在这个项目中,将提供对黑洞,其形成和黑洞事件的预先知识。将引入霍金辐射,并发现其存在和证明其存在。量子场理论是理解证据所必需的,因此给出了量子场理论的少量描述。将概述解释Hawking证明所需的Bogoliubov转换,并指出它的含义。还讨论了鹰辐射现象的物理意识的方式。还使用无毛定理介绍了黑洞信息悖论,并概述了其建议的决议,最后简要描述了其含义。关键字:黑洞,鹰辐射对悖论1。恒星的生命和黑洞的形成宇宙充满了物质。氦气和氢气的气体云层以巨大的质量和不同的密度在宇宙周围漂浮。达到阈值密度后,每个粒子上云的净重力都克服了每个单独粒子的动量,从而导致气体云的所有颗粒被吸引到气体云系统的重心。由于气云的所有颗粒由于重力在每个粒子上的重力而汇合在一起,并导致核裂变。这种核裂变在向外运动中释放出能量,并因此抵消了大量引力的向内拉力。这是形成恒星的方式。
禁止自主武器。1 一个新的非政府组织“阻止杀手机器人运动”(CSKR)于 2012 年 10 月成立,旨在推动此类禁令。2015 年,未来生命研究所(FLI)发出新的禁令呼吁,但目前仅限于攻击性自主武器。2 FLI 的提议获得了数万名签名者的支持,其中包括伊隆·马斯克和斯蒂芬·霍金等知名人士,并在国际媒体和社交媒体上引起了广泛关注。与此同时,CSKR 于 2014 年在日内瓦协助组织了“非正式专家会议”,会议在联合国《禁止或限制使用某些可被视为具有过分伤害力或滥杀滥伤作用的常规武器公约》(CCW)的主持下召开,旨在探讨在现有的地雷和致盲激光等被禁或限用武器禁令基础上增加自主武器禁令的可能性。3 2017 年,这些会议升级为正式成立的政府专家组 (GGE) 的年度会议,目前仍在举行中。4 在国际法律方面取得这些进展的背景下,出现了大量关于自主武器伦理和政策的文献,媒体对这场辩论的关注度也不断提高。至少在公共领域,某种禁令的势头似乎正在增强。
二元性的另一侧是重力和黑洞。双重性也有助于我们通过边界量子系统中的量子信息处理来理解黑洞的量子性质[58]。近年来,Sachdev – Ye-Kitaev(Syk)模型与几乎反DE的保姆时空之间的二元性的简单性和分析性[59 - 64]是我们对黑洞的理解中许多发展的指导灯笼。这是指黑洞的量子混沌特性[65-69],以及最近向黑洞信息悖论[70,71]朝着黑洞的量子混沌特性。朝着霍金辐射的信息含量,海顿和普雷斯基尔[72]提出了一个引人入胜的思想实验,其中只能观察到几个量子的鹰辐射,就可以迅速恢复到旧的黑洞中。此提案后来通过提供用于解码预期信息的机制来使通用量子系统混凝土[73]。在第一个思想中,人们可以将信息在Quanth Ciced中可视化,以作为从输入到输出的信息传送的一种形式。上述内容是正确的,是本次评论的某些部分。最近有人争辩说,Hayden-Preskill启发的信息解码通用量子通道的解码实际上与受虫洞传送启发的电路相似(在某些限制中相同)[74 - 76]。