ACHP 历史保护咨询委员会 ADLS 飞机探测照明系统 AOC 关注区域 BiOp 生物学意见 BOEM 海洋能源管理局 BSEE 安全与环境执法局 CEQ 环境质量委员会 COP 建设与运营计划 CR 保护建议 CSE 科学编辑委员会 CWA 清洁水法案 DOI 美国内政部 ECC 出口电缆走廊 EIS 环境影响声明 EMF 电磁频率 ESA 濒危物种法案 ESP 环境研究计划 ESPIS 环境研究计划信息系统 GBS 重力结构 HAPCs 特别关注的栖息地区域 HRG 高分辨率地球物理 ITR 偶然捕获条例 ITS 偶然捕获声明 km 公里 KOP 关键观察点 kV 千伏 LEDPA 对环境破坏最小的可行替代方案 LOA 授权书 LSZ 景观相似区 MA CZM 马萨诸塞州沿海区管理局 MEC 值得关注的弹药和爆炸物 MMPA 海洋哺乳动物保护法 MOA 备忘录 MPRSA 海洋保护、研究和保护区法 MW 兆瓦 NARW 北大西洋露脊鲸 NEPA 国家环境政策法 NHPA 国家历史保护法 NMFS 国家海洋渔业局 nmi 海里 NOI 意向通知 NOAA 国家海洋与大气管理局
胰岛素样肽(ILP)在脊椎动物的生长、代谢和繁殖中起着关键作用。在甲壳类动物中,一种类型的 ILP,胰岛素样雄激素腺激素(IAG)据报道与性别分化有关。然而,其他类型 ILP 的功能很少报道。在这里,我们在脊尾白虾(EcILP)中鉴定了另一种类型的 ILP,它是果蝇 ILP7 的直系同源物。序列表征和表达分析表明,EcILP 的异二聚体结构和表达谱与脊椎动物的胰岛素/IGF 和昆虫 ILP 相似。利用 CRISPR/Cas9 基因组编辑技术,我们生成了 EcILP 敲除(KO)对虾。EcILP -KO 个体的生长抑制性状和死亡率明显高于正常组。此外,通过RNA干扰(RNAi)敲低EcILP导致生长速度减慢,死亡率增加。这些结果表明EcILP是脊尾棘鱼重要的生长调节剂。
摘要 — 本文报道了一种三通道、非连续、流形多路复用器,工作频率为 220 至 330 GHz,工作带宽为 40%。该结构采用一组脊状基片集成波导 (SIW) 进行设计和实现。与传统 SIW 设计相比,脊状 SIW 提高了阻带带宽,并将整体结构尺寸缩小了 35%。三工器采用英特尔开发的有机封装基板技术,具有四层厚铜金属层和连续沟槽通孔代替标准通孔围栏,可显著降低脊状 SIW 波导的欧姆损耗。在三工器结构的开发中采用了电磁电路建模和协同设计技术。使用带状毫米波晶圆探测测量制造的三工器,通带中的插入损耗为 3 ∼ 7 dB,每个通道滤波器的平均回波损耗优于 10 dB。测得的三个通道的阻带衰减均优于 27 dB。
摘要 — 本文报道了一种三通道、非连续、流形多路复用器,工作频率为 220 至 330 GHz,工作带宽为 40%。该结构采用一组脊状基片集成波导 (SIW) 进行设计和实现。与传统 SIW 设计相比,脊状 SIW 提高了阻带带宽,并将整体结构尺寸缩小了 35%。三工器采用英特尔开发的有机封装基板技术,具有四层厚铜金属层和连续沟槽通孔代替标准通孔围栏,可显著降低脊状 SIW 波导的欧姆损耗。在三工器结构的开发中采用了电磁电路建模和协同设计技术。使用带状毫米波晶圆探测测量制造的三工器,通带中的插入损耗为 3 ∼ 7 dB,每个通道滤波器的平均回波损耗优于 10 dB。测得的三个通道的阻带衰减均优于 27 dB。
定向频率分析和记录 (DIFAR) 声纳浮标已被海军使用数十年,可通过单个传感器为低频(小于 4 kHz)声源提供磁方位。计算技术的进步使这种声学传感器技术越来越易于使用且功能更强大。此处提供的信息旨在帮助新用户确定 DIFAR 传感器是否适合鲸鱼声学研究。须鲸的声学探测范围平均接近 20 公里,但根据条件不同,范围从 5 到 100 公里不等。DIFAR 声纳浮标到典型研究船的无线电接收范围平均为 18 公里,船上有全向天线,声纳浮标上有标准天线。对一组鲸鱼叫声分析了 DIFAR 方位精度,其中鲸鱼的轨迹是众所周知的。经发现,DIFAR 传感器的方位标准偏差为 2.1 度。可以使用 DIFAR 方位消除已知位置研究船声音的系统误差和磁偏差。DIFAR 传感器阵列需要的传感器比传统水听器阵列少,有时可以提供比传统水听器使用的“到达时间”双曲线方法更准确的源位置。与传统水听器相比,使用 DIFAR 传感器更容易定位船舶等连续声音,因为通常很难找到瞬态特征来估计使用传统水听器阵列进行双曲线定位所需的时间差。DIFAR 水听器系统非常适合露脊鲸、蓝鲸、小须鲸、长须鲸和其他须鲸的叫声,以及包括船舶在内的许多其他声源。
定向频率分析和记录 (DIFAR) 声纳浮标已被海军使用了数十年,它通过单个传感器为低频(小于 4 kHz)声源提供磁方位。计算技术的进步使这种声学传感器技术越来越易于使用且功能更强大。此处提供的信息旨在帮助新用户确定 DIFAR 传感器是否适合鲸鱼声学研究。须鲸的声学探测范围平均接近 20 公里,但根据条件不同,范围从 5 到 100 公里不等。DIFAR 声纳浮标到典型研究船的无线电接收范围平均为 18 公里,船上有全向天线,声纳浮标上有标准天线。对一组鲸鱼叫声分析了 DIFAR 方位精度,其中鲸鱼的轨迹是众所周知的。经发现,DIFAR 传感器的方位标准偏差为 2.1 度。可以使用 DIFAR 方位消除已知位置研究船声音的系统误差和磁偏差。DIFAR 传感器阵列需要的传感器比传统水听器阵列少,有时可以提供比传统水听器使用的“到达时间”双曲线方法更准确的源位置。与传统水听器相比,使用 DIFAR 传感器更容易定位船舶等连续声音,因为通常很难找到瞬态特征来估计使用传统水听器阵列进行双曲线定位所需的时间差。DIFAR 水听器系统非常适合露脊鲸、蓝鲸、小须鲸、长须鲸和其他须鲸的叫声,以及包括船舶在内的许多其他声源。
拖曳船上和系泊观测表明,内部重力波越过帕劳北部热带西太平洋海域海面以下 1000 米的高大超临界海底山脊。背风波或地形弗劳德数 Nh 0 / U 0(其中 N 为浮力频率,h 0 为山脊高度,U 0 为远场速度)介于 25 和 140 之间。波浪是由潮汐和低频流叠加产生的,因此具有两个不同的能量源,组合振幅高达 0.2 ms 2 1 。波浪的局部破碎导致湍流动能耗散率增强,在靠近地形的山脊背风处达到 10 26 W kg 2 1 以上。湍流观测显示大潮和小潮条件形成鲜明对比。大潮期间,潮汐流占主导地位,湍流在海脊两侧分布大致相等。小潮期间,平均流占主导地位,相对于平均流,湍流主要出现在海脊下游一侧。海脊对水流施加的阻力估计为 O (10 4 ) N m 2 1(每次穿越海脊时),以及相关的功率损失,为低频海洋环流和潮汐流提供了能量吸收。
摘要。压力脊影响海冰覆盖的质量、能量和动量预算,并对穿越冰封水域的运输造成障碍。量化脊特征对于了解海冰总质量和改善高分辨率模型中海冰动力学的表示非常重要。在北极年度冰桥行动 (OIB) 航空调查期间收集的多传感器测量数据为评估冬末的海冰提供了新的机会。我们提出了一种从高分辨率 OIB 数字测绘系统 (DMS) 可见光图像中得出脊帆高度的新方法。我们通过绘制北极西部和中部 12 个压力脊沿线的完整帆高分布来评估该方法的有效性。通过与同时发生的机载地形测绘仪 (ATM) 高程异常进行比较,可以证明该方法并评估 DMS 得出的帆高。帆高和高程异常的相关系数为 0.81 或以上。平均而言,帆高平均值和最大值与 ATM 海拔高度的吻合度分别在 0.11 米和 0.49 米以内。在绘制的山脊中,帆高平均值范围为 0.99 至 2.16 米,而最大帆高范围为 2.1 至 4.8 米。DMS 沿山脊的采样率也高于同步的 ATM 数据。