85( - %+’:e6oo:p7q jr stut stut 6wj7?:7UAPJ7,:7O6W?P6TA:7WAQ JR O>:S6QAQUAQ5:Quaquu:Quaquu:Qaov P:PQ:PQ:6PX> PAVI> PAVI> P:p:� 只有:,j7opju:pqa6w q5s \:nught a7:xjwj?vy g7 o> aq z6z:p,:o> o> o> o> o> paxs:luq 6wj7?:78 UAPJ7,:7O6W?P6AT:7OQ 67T O>:P:W6J7Q> azs s:OU [:7 QZ:7 QZ:7 QZ:XA:XA:QUQ 67T 67T 67T 6SJU:?PJ57T NAS:O67 EW6O:65 , 6WZA7: ,:6TJ[ 67T 6WZA7: QO:ZZ:Y N>: P:Q5WOQ 6P: Q5,,6PA]:T 6Q RJWWJ[Q :( % ) "+) QZ:XA:Q [:P: P:XJPT:T A7 "'# ZWJOQ' JR '# QAO:Q%)。jr [> ax> jxx5pp:t a7 6wza7:,:6t8 j [q 67t%*'a7 6wza7:qo:qo:zz:zz:y n>:75,s:p jr qz:xa:xa:xa:q p67?:t rpj, * oj *“ a7 6wza7:,:6tj [> aw:ao p67?:t rpj,“ oj%(a7 6wza7:qo:zz:y(”)= z:xa:xa:q pax> 7:qq a7xp:6q:6q:t [ao> w6oao5t:67t wj7 wj7?ao5t:ao5t:ao5t:a o5t:a o5t:k p:sp:xp:xp:xp:xp:xp:xp:6q:6 q:so: 676WA QZ:XAQUE:7:7OAJ7,:7O6W R6XAPQ'Q> Q'A:QA PAXAD [6Q QA?Q:6QJ7 ZP:Xazao6OAJ7 67T [6p,o> a7t:^y( *)= Z:XA:XA:Q pax> 7:qQ [6Q ZJQAOAU:WV XJPP:WV XJPP:W6O:W6O:W6O:W6O:w6o:t [ao> 6SJU:? 6sju:?PJ57T ́,6QQQQ ]6WZA7:,:6TJ [6wza7:QO:QO:ZZ:,NAS:,NAS:O67 EW6O:65 b:QQ PAX PAX PAX
81G 0.07 8.3 −9.3 — 3.67×10 11 3.8 0.3 95.9 0.4 65.2 34.3 注 : “ — ” 表示未测出或无法计算 ; R C 为样品 3 He/ 4 He ; R A 为大气 3 He/ 4 He : 大气 ( 3 He/ 4 He ) =1.39×10 −6 、( 4 He/ 20 Ne ) =0.318 , 地幔 ( 3 He/ 4 He ) =1.1×10 −5 、( 4 He/ 20 Ne ) = 1 000 , 地壳 ( 3 He/ 4 He ) =1.5 ×10 −8 、( 4 He/ 20 Ne ) =1 000 ; δ 13 C-CO 2 端部构件的值 : 地幔端元取值 ( δ 13 C=−6.5±2.5‰ , CO 2 / 3 He=2×10 9 ), 碳酸盐端元取值 ( δ 13 C=0±1‰ , CO 2 / 3 He=1×10 13 ), 沉积物端元取值 ( δ 13 C=−30±10‰ , CO 2 / 3 He=1×10 13 ) 。
胃癌是全球第五大常见恶性肿瘤和第三大致死性癌症(2018 年死亡人数为 738,000 人)。由于组织学和肿瘤内异质性,其分子特征分析变得复杂。此外,先前的研究表明,胃癌的发病率表现出广泛的地理差异。青藏高原 (QTP) 是中国最大、最高的地区,是全球重要的生物多样性热点地区之一。为了更好地了解胃癌的发病机制并提供专门针对青藏高原患者的靶向治疗策略,我们从青海省人民医院的 30 名原发性胃腺癌患者中收集了肿瘤和血液样本。我们讨论了这些患者的临床和分子特征,这些特征归因于该地区的独特特征,包括高海拔(平均海拔高度约为 4,000 米)、多民族群体和特定的生活方式或习惯(如吃太多牛羊肉、有酒精和香烟问题等)。通过与从 TCGA 数据门户收集的西方胃癌患者进行比较,提出了青藏高原患者的一些独特特征。它们包括年轻人发病率高,大多数肿瘤位于体内,大多数 SNP 在第 7 条染色体上检测到,以及少数民族和汉族之间的分子图谱非常不同。这些特点将为提高青藏高原胃癌诊断和预后的有效性提供前所未有的机会。此外,为了针对这 30 名患者提出专门设计的靶向治疗方案,我们引入了一个经过调整的基于内核的学习模型和 462 个患者来源的肿瘤细胞 (PDC) 的药物基因组学数据汇编,这些数据说明了癌症患者不同的遗传和分子背景。总之,我们的研究为更好地了解 QTP 中胃癌的机制并指导针对患者的最佳定制治疗提供了巨大的机会。
编者按:珠穆朗玛峰是地球上的最高峰,它几乎无人知晓,但仍然是个谜:地球科学家仍在不断探索这座山峰移动(以及仍在移动)的机制。第20页,我们将深入探讨急流高压,探究“如何建造世界最高峰”。本期其他报道探讨了珠穆朗玛峰和喜马拉雅山脉其他部分如何在南北方向投射长长的阴影。在北部,气候变化和全球能源需求正在重新定义中国管理青藏高原北部矿产资源的方式(“对地球上两个最高沙漠的锂、水和气候的担忧”,第15页)。在南部,融化的冰盖使“印度数百万人面临冰川湖洪水的威胁”(第13页)。从暗示古代海洋存在的山顶化石到模拟未来洪水的卫星数据,地球科学家正在使用创新工具和敏锐的智力来更好地了解珠穆朗玛峰和世界屋脊。
1 中国农业科学院兰州畜牧与药科研究所,农业农村部青藏高原动物遗传育种重点实验室,牦牛繁育工程重点实验室,兰州 730050,甘肃;wondessenayalew9@gmail.com 2 亚的斯亚贝巴大学生物技术研究所,亚的斯亚贝巴邮政信箱 1176,埃塞俄比亚;getinet.tarekegn@sruc.ac.uk (GMT); tesfu74@yahoo.com (TST) 3 苏格兰农村学院(SRUC),爱丁堡大学罗斯林研究所大楼,爱丁堡 EH25 9RG,英国 4 卡罗琳斯卡医学院妇女和儿童健康系儿童癌症研究组,Tomtebodavägen 18A,17177 斯德哥尔摩,瑞典 5 瑞典农业科学大学动物育种和遗传学系生物信息学系,邮政信箱 7023,S-750 07 乌普萨拉,瑞典;renaud.van.damme@slu.se (RVD);erik.bongcam@slu.se (EB-R.) 6 埃塞俄比亚生物和新兴技术研究所,亚的斯亚贝巴邮政信箱 5954,埃塞俄比亚;zededeaget@gmail.com * 通信地址:wuxiaoyun@caas.cn (XW); pingyanlz@163.com (邮箱)
a 北京大学城市与环境学院,北京 100871,中国 b 中国气象局国家气候中心,北京 100081,中国 c 国网能源研究院,北京 102209,中国 d 纽约州立大学石溪分校工程与应用科学学院技术与社会系,纽约州立大学石溪分校,11794,美国 e 北京师范大学地理科学学院地表过程与资源生态国家重点实验室,北京 100875,中国 f 金风科技股份有限公司,北京 100176,中国 g 中国科学院青藏高原研究所,北京 100101,中国 h 中国宏观经济研究院能源研究所,北京 100038,中国 i 中国科学院西北生态环境资源研究院,寒区科学国家重点实验室,兰州 730000,中国 j 学校中山大学地理科学与规划学院,广州,510275,中国 k 中国海洋石油总公司研究院,北京,100028,中国 l 苏黎世联邦理工学院大气与气候科学研究所,苏黎世,8006,瑞士
19 世纪初,Eremurus 被首次描述。然而,由于样本有限以及迄今为止基因标记数量少,它的系统发育和进化在很大程度上是未知的。在本研究中,我们分析了属于 2 个亚属和 3 个部分的 27 个物种的质体基因组,这些物种分布在中亚(其多样性中心)和中国。我们还分析了 33 个物种的核 DNA ITS,涵盖了中亚、西南亚和中国的该属所有亚属和部分。我们的研究结果表明,该属是单系群,尽管 Eremurus 和 Henningia 亚属都是并系群。基于质体基因组和 nrDNA 的系统发育树都有三个分支,这些分支并未反映该属的当前分类。我们的生物地理学和时间校准树表明 Eremurus 起源于始新世下半叶的古特提斯地区。从早渐新世到晚中新世,Eremurus 发生了分化。副特提斯海的退缩和几次造山事件,如青藏高原和周围山脉(阿尔泰、帕米尔、天山)的逐渐隆升,导致中亚发生严重的地形和气候(干旱化)变化,可能引发了分支和物种的分裂。在这个转变中的中亚,物种形成迅速进行,主要是由众多山脉造成的替代和对该地区存在的各种气候、地形和土壤条件的专业化所驱动。版权所有 © 2023 中国科学院昆明植物研究所。由 Elsevier BV 代表科爱传播有限公司提供出版服务。这是一篇根据 CC BY-NC-ND 许可协议(http://creativecommons.org/licenses/by-nc-nd/4.0/)开放获取的文章。
2. 中国航天科工集团公司(CASIC)在2018年中国航展上展示了一款车载激光武器,名为LW-30激光防御武器系统。中国航天科工集团是中国最大的导弹制造商之一。3. LW-30激光防御武器系统可使用定向发射高能激光快速拦截多种空中目标,例如光电制导设备、无人机、制导炸弹和迫击炮。该系统由一辆雷达指挥通信车、至少一辆激光枪运载车和一辆后勤保障车组成。该系统可根据特定场景和需求灵活部署在关键区域。4.它可以完成独立作战或多人组网打击,也可以集成到传统防空武器系统中。具体来说,它可以与近防武器系统、防空导弹等传统武器配合使用。 5.该系统旨在探测和打击低、慢、小(LSS)目标,即飞行高度低于一公里、速度在200公里/小时左右、雷达反射截面小于一平方米的目标。 6.它可以探测无人机,遏制敌人的战术侦察,打击空中恐怖袭击。恐怖分子通常利用LSS目标携带爆炸物和放射性物质。 7.该系统可能部署在青藏高原和南海岛屿。分析人士表示,该系统的研究进展和技术状况非常成熟,可能很快就会投入军队服役。 8.与激光武器系统一起,中国兵器装备集团公司在航展上还展示了另一种激光武器,名为“轻型车载激光扫雷引爆系统”。该系统可以摧毁爆炸物
老芒麦是一种优良的饲草和生态修复草,在草原生态建设和畜牧业可持续发展中发挥着重要作用。中国老芒麦野生种质资源丰富,相似和对比的气候条件塑造了不同的种群,丰富了老芒麦的遗传多样性。为了更全面、低成本地聚合老芒麦种质资源,更精准地利用其遗传变异,本研究对老芒麦核心种质资源收集及利用单核苷酸多态性(SNP)标记进行指纹分析进行了初步探索。通过多种评价指标结合加权处理,从90份野生老芒麦样品中成功鉴定出36份材料作为核心种质。 36个核心种质样品的遗传多样性评估、等位基因评估和主成分分析均表明这36个样品准确、全面地代表了90份老麦种质的遗传多样性。另外,从90份老麦样品全基因组测序产生的高质量SNP位点中,鉴定出290个SNP位点作为候选标记,其中52个SNP位点被筛选为老麦DNA指纹分析的核心标记。并利用竞争性等位基因特异PCR(KASP)技术,基于这些核心标记对60份野生老麦种质进行了居群起源鉴定。本研究筛选出的核心SNP标记能够准确区分来自青藏高原和其他地区的老麦种质资源,为老麦种质资源的继续收集和鉴定提供参考,也为老麦种质资源的保存和利用提供科学依据。
摘要 明确约束的断层滑动速率对于理解断层系统内的应变分配和相关的地震危险性非常重要。海原断层是青藏高原东北缘一条重要的活跃走滑断层,其晚更新世的滑动速率一直存在争议。Lasserre 等人 (1999) 的前期研究表明滑动速率为 12 ± 4 毫米/年,高于最近通过大地测量确定的相邻断层段的滑动速率。我们利用位于松山村北部的两个站点的新高分辨率机载光探测和测距数据重新分析和评估了滑动速率。基于这些数据,我们修改了现场映射的偏移约束。在马家湾站点,我们记录到 T1/T2 阶地立面顶部左旋位移分别为 130 ± 10 米,底部左旋位移为 93 ± 15 米。在玄马湾遗址,T4/T1′阶地立面的偏移量更新为 68 +3 / −10 米。结合新的地质年代学数据,我们评估 T2 的废弃年龄为 26.0 ± 4.5 ka,T1 的废弃年龄为 9,445 ± 30 年。这些数据表明,基于上部阶地和下部阶地重建,自~26 ka 以来的滑动速率在 5.0 +1.5 / −1.1 和 8.9 +0.5 / −1.3 毫米/年之间。我们的重新评估支持了藏北地区明显的滑动速率差异可能存在系统性偏差,这是由于使用下部阶地重建来解释偏移年龄造成的。