姓名(名)姓名(姓)电台海报标题 Lauryn Adair 1 转运蛋白配体抑制斑马鱼 Dravet 综合征模型中的兴奋过度和代谢缺陷 Sarah Asby 2 癌症患者免疫检查点抑制剂介导的肾毒性新型检测方法的开发 Stephanie Bersie 3 吞噬细胞内坏死和凋亡颗粒细胞尸体的差异处理 Daniel Breiner 4 血红素改变铜绿假单胞菌烷基喹诺酮的产生 Robert Canfield 5 纳米颗粒递送核酸以诱导膀胱癌中的 1 型干扰素反应 Nai-Chia Chen 6 范围时间与 1 型糖尿病患者视网膜病变风险的关系 Sophia Clune 7 CHD1L 抑制剂 OTI-1100 的有效合成和衍生物作为新型癌症治疗药物 Bella Coenen 8 基于代谢组学鉴定以蓝莓为第一食物的婴儿血清和尿液中的蓝莓化合物 Mouna Dardouri 9 科罗拉多州在 2019 年至 2021 年 COVID-19 大流行期间处方药使用情况的变化:使用 ARIMA 模型进行中断时间序列分析 Baharak Davari 10 西罗莫司代谢物及其降解产物的免疫抑制活性 Anna Figueroa 11 神经元兴奋性过高的体外模型中的生物能量改变和氧化还原控制 Hanmant Gaikwad 12 用菁脂质对肿瘤进行体内涂抹:结构-活性关系 Paola Garcia Gonzalez 13 氧化应激导致 GFAP 和波形蛋白表达增加 Shilpa George 14 用于眼部药物的噬菌体样颗粒递送:等离子体波导共振光谱和使用体外和离体角膜模型的评估 Matthew Gibb 15 肺部炎症和病理在甲醛和氯化苦毒性模型中依赖于肥大细胞
摘要 在便携式睡眠技术快速发展的背景下,前所未有的机遇与复杂的新挑战并存。研究人员、临床医生和技术开发人员可以通过合作并加深对良好和不良睡眠者与这些技术的关系的理解而获益匪浅。本次会议将重点介绍对加拿大代表性样本中使用便携式睡眠技术的调查数据。会议将概述一些关于在研究中整合不同级别的活动记录仪设备的建议。会议还将讨论一些新型可穿戴和近距离睡眠追踪器的临床应用。会议将规划加拿大睡眠研究联盟正在投资的计划,以激发对潜在合作领域的思考。
主题演讲 下午主题演讲 (3:00 – 3:45) 推进神经发育障碍的基因疗法 Benjamin Prosser 癫痫和神经发育障碍中心 (ENDD) 主任 宾夕法尼亚州费城宾夕法尼亚大学佩雷尔曼医学院生理学系副教授。宾夕法尼亚州费城宾夕法尼亚大学佩雷尔曼医学院宾夕法尼亚肌肉研究所副主任。 STXBP1 和 SYNGAP1 分别编码神经传递和突触可塑性所需的突触前和突触后蛋白。这些基因的变异会导致罕见、复杂和使人衰弱的神经系统疾病。目前尚无能够改变这些疾病病程的治疗方法,而且人们对这些疾病的自然进展及其在成人中的表现知之甚少。我们新成立的癫痫和神经发育障碍中心 (ENDD) 的团队旨在开发新的基因疗法来治疗这些疾病,并在临床上确定它们的表现和轨迹,以便进行未来的临床试验。在这里,我将概述实现这些转化和临床研究目标所面临的挑战和采取的策略,并更详细地检查我们的主要治疗策略之一——使用反义寡核苷酸 (ASO) 来靶向和操纵 mRNA 处理,以恢复 STXBP1 和 SYNGAP1 的表达。
斯蒂芬妮·洛维奇 乔什·马雷克 莫娜·玛丽·迈尔斯·马丁内斯 尤莱卡·马丁内斯·卡斯蒂略 卡琳娜·马托斯 松波浩 伊丽莎白·马修斯 珍娜·麦克亨利 詹姆斯·麦克纳马拉 伊曼纽尔·梅德拉诺 奥黛丽·默瑟 S. 门罗 文叶灿 姜文孙 理查德·穆尼 费德里卡·莫斯蒂 多尔萨·莫特瓦利 韩牧 帕特里克·穆卡希 伊娃·瑙曼 托马斯·阮 伊丽莎白/利兹·奥戈尔曼 伊奇·奥吉罗·塞内卡 奥克森丁 塞夫吉·奥兹图尔克 凯特琳·佩斯利 安妮卡·帕特森 迈克尔·巴顿 约翰·皮尔森 黛西·佩雷斯 莎朗·波利 阿贾·普拉加纳 齐家轩 莉莉安娜·奎格利 丹尼尔·昆特罗 尼尔维卡·拉斯托吉 J. 拉塞尔·拉文内尔 纳马·赖歇尔 约瑟夫·里蒂纳 玛丽亚·鲁兹特 布莱恩·鲁伊斯·洛佩兹 劳拉·鲁普雷希特 杰弗里·拉斯 费尔南多·桑托斯·瓦伦西亚
由于新型抗菌剂开发不频繁,而且进化使现有策略失效,缺乏针对细菌感染的资源是一个普遍且日益严重的问题。我之前在 Lynette Cegelski 教授实验室的研究重点是阐明细菌生物膜组装的基本化学原理,重点研究临床相关的泌尿道致病性大肠杆菌菌株。具体来说,我致力于开发固态核磁共振方法来研究淀粉样蛋白-多糖相互作用,以确定大肠杆菌不溶性细胞外基质的结构;此外,我还研究了细菌淀粉样蛋白的生物发生和新型小分子的抑制机制。在未来的研究中,我有兴趣应用化学和生物物理工具来研究难以解决的生物系统:我对细胞膜和膜蛋白的物理特性和动态性很着迷,我希望围绕这些兴趣及其在癌症进展或免疫现象中的作用开展论文工作。
[注册费]可用的折扣(直到1/15:US小时的15日)员工人数10或更少$ 2,118→$ 1,500员工人数11至50美元$ 5,394→$ 3,820雇员人数51至99 $ 6,204的雇员中的员工中的员工数量为$ 4,4,394→$ 5,4,394 $ 7,4664→4,464•5,464•员工人数10美元或以下$ 1,326→$ 829的员工人数11至50美元$ 3,372→$ 2,107员工人数51至99美元$ 4,044→$ 2,527员工人数超过100人$ 5,364→5,364→$ 3,352 *如果是公共机构或地方政府$ 1,105的官员,
Alpine River Biotiverity在冰川撤退中受到快速变暖驱动的冰川撤退的威胁,但是我们预测专业冷水物种的未来分布的能力目前有23个限制。在这里,我们将未来的冰川预测,水文路由方法和物种24分布模型联系起来,以量化冰川对整个欧洲阿尔卑斯山的15 25阿尔卑斯河无脊椎动物物种的人口分布的变化,从2020年到2100年。冰川26对河流的影响预计将稳步下降,河网的河流以每十年1%的速度扩展为27个海拔。物种预计将经历上游分布的变化28,其中冰川持续存在,但在功能上灭绝了冰川完全消失。预计有几个29个高山集水区为冷水专家提供气候避难。但是,当今的30个受保护区网络提供了对这些未来避难所的相对较差的覆盖范围,31表明高山保护策略必须改变以适应32个全球变暖的未来影响。33
在哺乳动物中,胰腺是一种重要的器官,既可以执行消化(外分泌)和血糖调节(内分泌)功能,而在人类中,它也参与了严重的疾病,例如糖尿病。胰腺被认为是脊椎动物的通用器官,但它们的结构和功能因鱼而异。在脊椎动物的进化中,胰腺演变为包括内分泌细胞和外分泌细胞,这在从鱼到两栖动物的过渡中看到了这一变化。这一进化步骤强调了两栖动物在研究胰腺发育中的重要性。在这项研究中,我们使用伊比利亚蜘蛛(Pleurodeles waltl)研究了胰腺的基本结构,发育过程和再生能力,这是一种主要用于尾尾两栖动物的模型动物。 NEWT胰腺由单个哺乳动物样器官组成,包括外分泌和内分泌组织,并且没有在鱼中发现的肝癌。另一方面,已经揭示了胰腺样组织,被认为是尾胆道独有的,与鱼类胰腺类似。在发育过程中,在原始肠道的发育阶段,在两个裤子芽中的每一个中都开发了两个不同类型的胰腺细胞,并且具有复杂功能的胰腺是独立于肠道形成的,当胰腺由胰腺芽融合在一起时,它们与胰腺类似于胰腺中的胰腺类似的过程,如胰腺中的麦芽麦芽剂中的胰腺。接下来,我们通过破坏CRISPR-CAS 9来调查PDX1基因的效果,PDX1基因是脊椎动物胰腺发展的主要因素,发现在NEWT中开发了未开发的胰腺,随后可以生存。此外,对PDX基因的同步分析表明,除了Newts中的PDX1外,PDX2基因仅在某些鱼类中存在于某些鱼类中,也存在于基因组中。最后,除去了NEW的胰腺,并通过观察细胞增殖模式和测量血糖水平来检查胰腺的再生能力。胰腺去除会诱导临时细胞增殖,但并未导致完整的形态学和结构再生。在这项研究中获得的结果提供了对脊椎动物胰腺的进化轨迹的见解,从消化功能所涉及的原始作用中,以发展为能量代谢的复杂调节,尤其是负责血糖调节的独立器官。我的研究表明,纽特胰腺在填补有关脊椎动物胰腺功能进化的重要知识中的空白方面起着重要作用。