摘要 焦虑影响着全球大约 5-10% 的成年人口,给卫生系统带来了沉重的负担。尽管焦虑无处不在,并且对身心健康产生影响,但大多数受焦虑影响的人都没有得到适当的治疗。精神病学领域的当前研究强调需要识别和验证与这种疾病相关的生物标记。神经生理学临床前研究是一种确定大脑节律的主要方法,可以作为焦虑主要特征的可靠标记。然而,虽然神经影像学研究一致表明前额叶皮层和皮层下结构(如杏仁核和海马)与焦虑有关,但对于导致这种疾病的潜在神经生理过程仍缺乏共识。允许非侵入性记录和评估皮质处理的方法可能有助于识别可用作干预目标的焦虑特征。在本研究中,我们将源功率共调节 (SPoC) 应用于具有不同程度焦虑特质的参与者样本的脑电图 (EEG) 记录。 SPoC 的开发是为了寻找空间滤波器和模式,这些滤波器和模式的功率与个体参与者的外部变量共同调节。所获得的模式可以从神经生理学角度进行解释。在这里,我们将 SPoC 的使用扩展到多受试者环境,并使用具有真实头部模型的模拟数据测试其有效性。接下来,我们将 SPoC 框架应用于 43 名人类参与者的静息状态脑电图,这些参与者的特质焦虑评分可用。SPoC 对窄频带数据的受试者间分析揭示了具有神经生理学意义的 θ 波段(4-7 Hz)空间模式,这些模式与焦虑呈负相关。结果特定于 θ 波段,在 alpha(8-12 Hz)或 beta(13-30 Hz)频率范围内未观察到。θ 波段空间模式主要位于额上回。我们讨论了我们的空间模式结果对于寻找焦虑生物标志物的相关性及其在神经反馈研究中的应用。
神经反馈被认为是不同精神疾病的潜在补充疗法。这种方法的兴趣在于预测个人表现和结果。在本研究中,我们应用基于功能连接的建模,使用脑电图 (EEG) 和功能性近红外光谱 (fNIRS) 模式来 (i) 研究静息状态连接是否可以预测情感神经反馈任务期间的表现,以及 (ii) 评估预测连接概况在 EEG 和 fNIRS 技术之间的相关程度。在健康受试者的额叶皮质上记录的 fNIRS 氧合血红蛋白和脱氧血红蛋白浓度以及受 alpha 频带调制的 EEG beta 和 gamma 波段(分别为 beta-m-alpha 和 gamma-m-alpha)用于估计来自每种神经成像模式的功能连接。对于每个连接矩阵,采用留一法选择相关边,将其汇总为“连接汇总分数”(CSS),并作为输入提交给支持向量回归器(SVR)。然后,使用训练后的 SVR 模型预测被排除在外的受试者的表现。使用 Pearson 相关性评估两种模态的 CSS 之间的线性关系。预测模型显示平均绝对误差小于 20%,fNIRS 氧合血红蛋白 CSS 与 EEG gamma-m-alpha CSS 显著相关(r = -0.456,p = 0.030)。这些结果支持了任务前电生理和血流动力学静息态连接是神经反馈表现的潜在预测因子,并且是耦合的。这项研究促使使用联合 EEG-fNIRS 连接作为结果预测因子,以及作为功能连接耦合研究的工具。
偏向多数人群的算法偏差对机器学习在精准医疗中的应用构成了关键挑战。在本文中,我们评估了脑功能磁共振成像行为表型预测模型中的这种偏差。我们使用两个由混合族裔/种族组成的独立数据集(青春期前与成年)检查了预测偏差。当使用以白人美国人(WA)为主的数据训练预测模型时,非裔美国人(AA)的样本外预测误差通常高于 WA。这种对 WA 的偏差对应于模型学习到的更多类似 WA 的大脑行为关联模式。当仅使用 AA 训练模型时,与仅使用 WA 或相同数量的 AA 和 WA 参与者进行训练相比,AA 预测准确度有所提高,但仍低于 WA。总体而言,结果表明,需要谨慎对待当前大脑行为预测模型在少数族裔人群中的应用,并进行进一步研究。
摘要:目的:探讨轮班工作对中国煤矿工人认知功能的影响。背景:轮班工作在煤炭等现代工业中普遍存在,人们越来越关注轮班工作对矿工工作绩效和个人幸福感的影响。方法:共有54名三班矿工(早班17人,下午班18人,夜班19人)参加了这项探索性研究。采用静息态fNIRS功能连接方法评估轮班前后的认知能力。结果:结果显示,三班工人轮班前后的认知能力存在显著差异。大脑功能连接降低的顺序为夜班、下午班和早班。早班和晚班工人在轮班结束时脑功能连接较轮班前有所降低。夜班工人的结果则相反。各组工人前额叶皮层静息态脑功能网络均表现出小世界特性。早班和晚班工人前额叶皮层中介中心性和节点局部效率存在显著差异。结论:本研究结果为从脑科学角度研究轮班工作对中国煤矿工人认知能力的影响提供了新的思路。
大脑可塑性和功能重组是缺血性中风后患者功能性运动恢复的机制。通过脑电图研究静息态运动网络功能连接已被证明有助于研究信息流中发生的变化并发现与运动功能恢复的相关性。在文献中,大多数将脑电图应用于中风后患者的研究都研究了相互作用的大脑区域之间的无向功能连接。最近,人们开始研究连接的方向性,并提出了许多方法或特征,每种方法或特征都更适合描述不同的方面,例如网络节点之间的直接或间接信息流、耦合强度或其特征振荡频率。每项研究都选择了一种特定的测量方法,尽管文献中并没有达成共识,而且选择最合适的测量方法仍然是一个悬而未决的问题。为了阐明这一方法论方面,我们在此建议结合基于格兰杰因果关系的两个频域测量提供的直接和间接耦合信息,即定向相干性 (DC) 和广义部分定向相干性 (gPDC),以研究与感觉运动节律 α 和 β 相关的静息态定向连接的纵向变化,发生在 18 名接受康复治疗的亚急性缺血性中风患者中。我们的研究结果显示,在亚急性期康复后,信息流经运动前区在运动网络重组中起着重要作用。特别地,DC 强调了运动前区和初级运动区之间的半球内耦合强度的增加,特别是在 α 和 β 频带的同侧病变半球中,而 gPDC 在检测那些变化主要体现在人群中的连接方面更敏感。在 α 和 β 频段均检测到从损伤对侧运动前皮质向辅助运动区流动的因果流减少,在 β 频段观察到从同侧到损伤对侧运动前皮质的半球间连接显著增强。有趣的是,从损伤对侧运动前皮质向损伤同侧运动前皮质的连接与 α 频段上肢运动恢复相关。使用两种不同的定向连接测量方法可以更好地理解大脑之间的耦合变化
神经反馈训练 (NFT) 为现代医学界做出了有益的贡献。NFT 是基于操作性条件作用原理的生物反馈的一个子集。它是一种建立行为与效果之间关系的学习方法,可获得奖励和惩罚 (Cherry, 2020; Engelbregt 等人, 2016; Strehl, 2014)。从理论上讲,生物反馈是自动神经系统 (ANS) 的生物学见解。在其起源之前,“实时生理镜像”一词在第二次世界大战期间就已存在 (Sattar & Valdiya, 2017)。它仅限于心率、血压、皮肤温度、消化、呼吸和性唤起等生理过程。所有示例都是非自愿的,由 ANS 控制。在 1950 年代,一个反对的科学家团队不赞成 ANS 可能影响人类生理和心理状态的想法,这些状态也会对生物过程起作用 (Jones, 2016)。它在操作性条件、信息处理或技能学习方面仍存在疑问。此外,该假设不足以作为药物治疗的基础(Sattar & Valdiya,2017;Jones,2016)。研究人员在 20 世纪 60 年代发现,ANS 功能可能会发生类似于操作性环境的改变。因此,这是一个将生物反馈转变为可用于医疗实践的适当治疗方法的机会。
注意:除第一个受试者(潜在异常受试者)的 CEN 中的 fALFF 外,所有相关系数均显著。缩写:ALFF,低频波动幅度;CEN,中央执行网络;DC,度中心性;DMN,默认模式网络;fALFF,低频波动分数幅度;ReHo,区域同质性;SN,显著性网络。a 标记的受试者被视为潜在异常值;因此,对所有原始数据和原始出版物中提到的所有技术问题进行了交叉检查。交叉检查未发现该受试者的任何特殊性(部分信号丢失或移动)。但是,当进行没有这个受试者的额外分析时,这个样本量(15 名参与者)的结果与整个样本(16 名参与者)的结果并没有明显差异,如图 S1 和 S2 所示。
1. Desai RJ、Hernandez-Diaz S、Bateman BT、Huybrechts KF (2014) 参加 Medicaid 的女性在怀孕期间处方阿片类药物的使用增加。Obstet Gynecol 123 (5):997-1002。doi:10.1097/AOG.0000000000000208 2. Patrick SW、Davis MM、Lehmann CU、Cooper WO (2015) 新生儿戒断综合征发病率和地理分布增加:美国 2009 年至 2012 年。J Perinatol 35 (8):650-655。 doi:10.1038/jp.2015.36 3. Patrick SW、Schumacher RE、Benneyworth BD、Krans EE、McAllister JM、Davis MM (2012) 新生儿戒断综合征及相关医疗保健支出:美国,2000-2009 年。JAMA 307 (18):1934-1940。doi:10.1001/jama.2012.3951 4. Ross EJ、Graham DL、Money KM、Stanwood GD (2015) 胎儿接触药物对发育的影响:我们知道什么以及我们仍需了解什么。神经精神药理学 40 (1):61-87。doi:10.1038/npp.2014.147
1 荷兰奈梅亨拉德堡德大学医学中心 Donders 大脑、认知和行为研究所;2 荷兰奈梅亨拉德堡德大学医学中心认知神经科学系;3 澳大利亚克莱顿莫纳什大学心理科学学院特纳大脑与心理健康研究所和莫纳什生物医学成像研究所;4 荷兰蒂尔堡大学蒂尔堡认知与交流中心交流与认知系;5 西班牙塞维利亚塞维利亚生物医学研究所 (IBiS);6 荷兰奈梅亨拉德堡德大学医学中心神经病学系和帕金森与运动障碍专业中心;7 英国伦敦伦敦国王学院精神病学研究所神经影像科学中心;8 英国牛津大学 Wellcome 综合神经影像中心 (WIN FMRIB)
图 4:在不同 k 值下检测到的社区的层次结构。(A)上图和下图分别显示了 k 从 5 到 16 变化时 AD 和 NC 得出的社区层次结构的树状图。X 轴表示不同的簇,Y 轴表示簇之间的距离。截止距离设置为 0.5,其中所有社区合并为每组 16 个簇。这些簇涵盖 11 个常见的 RSN,包括视觉网络 (VN)、眶额皮质 (OFC)、显着网络 (SN)、DMN、执行控制网络 (ECN)、左/右额顶叶网络 (L/RFP)、感觉运动网络 (SEN)、边缘系统 (LIM)、腹侧注意网络 (VAN) 和基底神经节 (BG)。两组之间每个 RSN 的相似性显示在底部,每个 RSN 用一种颜色标记。 (B) 和 (C) 分别通过对 AD 组和 NC 组的每个簇内的社区进行平均来显示结果簇。列表示社区指数,行表示矩阵表示中的节点指数。红色框突出显示了两组在簇内层次结构方面的差异。
