目的:脑电图(EEG)可用于估计新生儿的生物脑时代。在月经年龄和脑年龄之间的差异,称为脑年龄差距,可能会导致成熟偏差。现有的大脑年龄EEG模型不太适合临床COT侧用途,用于估计新生儿的脑年龄间隙,因为它们依赖于相对较大的数据和预处理要求。方法:我们使用降低的数据要求培训了一种来自具有非神经开发的婴儿和幼儿发展(BSID)结果的早产新生儿的静止状态脑电图数据的深度学习模型。随后,我们在两个临床部位的两个独立数据集中测试了该模型。结果:在两个测试数据集中,仅使用单个通道的静息状态脑电图活动的20分钟,模型生成准确的年龄预测:平均绝对误差= 1.03周(p值= 0.0001)和0.98周(pValue = 0.0001)。在一个测试数据集中,在9个月的随访BSID结局中,严重异常结果组的平均新生儿脑年龄间隙显着大于正常结局组的平均脑年龄差异:平均脑年龄差距的差异差异= 0.50周(p-value = 0.04)。结论:这些发现表明,深度学习模型对来自两个临床部位的独立数据集进行了普遍性,并且模型的脑年龄间隙幅度在正常和严重的随访神经发育结果的新生儿之间有所不同。2024国际临床神经生理联合会。由Elsevier B.V.明显:新生儿大脑年龄间隙的幅度,仅使用单个通道的静息状态脑电图数据的20分钟来估算,可以编码临床神经发育价值的信息。这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。
扩展了Ainsworth [7]的开创性工作,除了安全的依恋外,不安全的依恋样式可以分为三个不同的类别:焦虑,焦虑,避免和混乱的依恋模式。值得注意的是,这些类别与Bartholomew和Horowitz的[8]成人的依恋模式的分类法紧密相吻合,这些分类法可以通过焦虑的焦虑,避免和恐惧的模式。Brennan,Clark和Shaver [9]采用项目反应和因子分析方法来全面检查各种成人依恋测量。他们的调查确定了两个总体因素,称为焦虑和回避,它们囊括了多方面的附着构建体的很大一部分。依恋焦虑是这些关键因素之一,其特征是与拒绝的恐惧和对关注的需求有明显的联系。当伴侣显得无动于衷或不可用时,具有高水平的依恋焦虑的个体往往会逐渐增加压力,这种动态被恰当地称为过度激活。相比之下,避免依恋,第二个关键因素表现为依恋系统的停用,反映了涵盖以消除人际关系依赖性和亲密关系[10]。可怕的依恋模式对应于焦虑和回避依恋特征的高表达。这种矛盾对在强烈压力的条件下的社会应对策略的崩溃构成了重大威胁[17]。与焦虑或回避的有组织的依恋模式有关,这种混乱的样式与影响调节,人际问题和心理病理症状的更严重的困难有关[11-16] [11-16],因为避免恐惧的个体希望与依恋人物紧密相关,并且无法同时信任和依靠它们。先前的研究表明,这种样式在被诊断出严重成瘾性疾病的患者中很普遍,例如阿片类药物依赖性或多核酸固定使用障碍(Schindler等,2019)。
简介:自由放养的白尾鹿(Odocoileus virginianus)是位于密歇根州东北部(美国)的牛结核病(BTB)的自我维持的水库,(美国)不断使该地区的牛业陷入困境。自由娱乐鹿的收获,诱饵禁令和农场的缓解措施减少了但没有消除鹿的BTB,也没有消除向牛的传播。鹿的明显患病率很低(1-2%),但恒定,疫苗接种可能是帮助解决该问题和值得研究的附加工具。结核分枝杆菌Calmette-guérin(BCG)疫苗是一种广泛使用的人类疫苗用于结核病,在家庭牲畜和野生动植物中也接受了很好的研究。它是主要的疫苗候选者,口服输送是将其交付给自由放养鹿的逻辑手段,尽管以前从未尝试过。
执行功能是人类认知的标志,并被定义为“高级认知过程,使个人能够在目标指导行为期间调节自己的思想和行动”(Friedman&Miyake,2017年)。在处理新颖和复杂的任务或情况时,通常会被招募(Miyake等,2000),并依靠一组包括额叶和顶部区域在内的大规模功能性脑网络(Uddin,2021年)。在此注册报告中,我们建议研究静止状态(RS)EEG微骨和执行功能之间的联系。执行功能很难研究,因为它们涵盖了相互关联的大量认知功能,这意味着它们不能纯粹通过特定的认知任务进行研究。为了克服此任务杂质问题,已提出使用潜在变量分析,该分析仅捕获跨误解的共同方差(Friedman等,2008; Miyake等,2000)。在域中进行了一项高度影响的研究(Miyake等,2000)表明,执行功能可以分解为三个潜在变量:心理固定转换(“移动”),信息进行记忆中的更新和监测(“更新”)和抑制前体反应(“抑制profentent profent-tim-thimibi-timi-timibi-timi-timimi-tim-tim”)。在此模型中,已经选择了九项认知任务(每个潜在变量三个),并发现彼此之间较弱相关(R介于0.05和.34之间),而三个潜在变量彼此之间显示中等相关性(R介于.42和.63之间)。执行功能的神经底物已在很大程度上通过fMRI进行了研究。这些结果说明了执行功能既显示统一性和多样性的事实(Friedman&Miyake,2017)。有趣的是,这种三因素模型显示出一些鲁棒性,因为它在健康的成人样本中多次复制(Karr等,2018)。Searching the Neurosynth database ( https://neurosynth.org/ ) with the separate terms “ executive functions ” , “ inhibition ” , “ shifting ” , “ working memory ” , returns overlapping sets of overlapping brain areas that include frontal areas (dorsolateral prefrontal cortex, anterior cingulate cortex, inferior frontal gyrus) and parietal areas (下顶叶,角回)(Uddin,2021),它是额叶 - 顶网络(FPN),执行控制网络(ECN)和显着性网络(SN)的一部分(Xu等,2020)。使用动态功能连通性(DFC)的研究表明,在执行功能任务(例如Stroop或n-背部)中,这些网络是动态调节的(Braun等,2015; Douw等,2016)。这些结果与最近假设神经灵活性的假设一致(即,大脑从一个状态变为另一种状态的能力)与认知表现有关(Hartwigsen,2018; Uddin,2021)。通过将RS期间fMRI DFC与各种认知功能任务的性能相关联,已进一步研究了这一假设(Zelazo,2006; Douw等,2016; Jia等,2014; Nomi等,2017)。综上所述,这些fMRI DFC研究表明,大脑网络动力学可能是认知性能的内在特征(Nomi等,2017; Uddin,2021)。除了fMRI外,EEG还提供了一种有趣的手段,可以捕获A
方法:招募了22例中风患者和15例健康受试者,以招募年龄,性别和体重指数。康复评估包括峰值氧气吸收(VO 2峰),峰值工作率,10米步行测试(10MWT),五次静止测试(FTSST)和6分钟的步行距离(6MWD)。静止状态fMRI数据,并分析了低频波动振幅(ALFF)的幅度变化与CRF分析以检测中风患者中与CRF相关的大脑区域的相关性。根据ALFF分析,进行大脑网络分析,并选择了中风患者的CRF相关脑区域作为种子点。功能连通性(FC)分析用于识别中风患者可能与CRF相关的大脑区域和网络。
结果:与HC相比,患有AUVP的患者在双侧岛状,右前中前回,左下额回和右侧额叶和右侧额叶以及左小脑前叶中的ALFF显示较低的ALFF。使用这些异常大脑区域作为种子,我们观察到AUVP患者的左岛和左前神经间的FC降低。此外,AUVP患者在左岛和左辅助运动区域之间显示FC增加。相关分析的结果表明,左岛中的ALFF值(Z值)与运河负率值(p = 0.005,r = -0.483)和左Insular Procuneus之间的FC(Z-Value)负相关,左二液和左precuneus之间的FC(Z-Value)与DIZZNICESS HINDICAP INSTICAP INVENTORY CRECTORY CONTISTORY CRESTORY SECTER(p = 0.012),r = 0.43。
1个神经调节中心和临床研究中心,Spaulding Rehabilitation Hospital and Massachusetts综合医院,哈佛医学院,美国马萨诸塞州,美国马萨诸塞州02115; lcamargo@mgh.harvard.edu(L.C.); kevin.pacheco.barrios@gmail.com(K.P.-B。)2 Unidad deResjuctivacióntolaGeneraceción y y y y y sinties证据En Salud,San Ignacio de Loyola大学,利马15024,秘鲁3精神卫生部,圣卡斯萨·德·斯卡萨(Paulo) lucasmurins@gmail.com 4里奥格兰德大学(UFRGS)联邦大学医学院,巴西Porto Alegre 90010-150; wcaumo@hcpa.edu.br 5疼痛和神经调节实验室,医院Declíricasde Porto Alegre(HCPA),Porto Alegre 90035-903,巴西 *通信:Fregeni.felipe.felipe@mgh.harvard.edu;电话。: +1-617-952-6153;传真: +1-617-952-6150†这些作者对这项工作也同样贡献。
tspo配体在治疗焦虑症中是苯二氮卓类药物的有希望的替代品,因为它们表现出较不明显的副作用,例如镇静,认知障碍,耐受性发展和滥用潜力。在一项随机的双盲重复测量研究中,我们通过评估副作用并从3天的alprazolam,Etefifoxine或aptbo中获取静息状态fMRI数据,将苯二氮卓(Alprazolam)与TSPO配体(Etifoxine)进行比较。为了详细研究FMRI中的药理学干预措施的影响,我们在研究中结合了与全脑功能网络连通性相关的互补分析策略,在区域同质性中表达的局部连接分析,低频率大胆的大胆扩增和独立静止型网络的一致性。参与者报告了与安慰剂相比,与阿普唑仑给药有关的疲劳,嗜睡和浓度障碍等不利影响。在静止状态fMRI中,我们发现功能连接密度,网络效率和网络富club系数的降低显着降低。在观察到高水平脑网络中的区域均匀性在阿普唑仑条件下的总体同质性逐渐减少,但我们可以同时检测到低水平感觉区域中的区域均匀性和静止状态网络相干性的增加。此外,我们发现粗体信号的低频室一般增加。此外,我们的结果表明,TSPO配体在治疗焦虑和抑郁症中的潜力。在埃毒素条件下,与安慰剂相比,参与者没有报告任何显着的副作用,并且我们没有观察到fMRI指标中的任何相应的调制。我们的结果与镇静在全球范围内断开低级功能网络的想法是一致的,但同时增加了它们的内部连接性。
抽象的物镜经硫代蛋白淀粉样蛋白心肌病(ATTR-CM)是由沉积野生型或突变的转染素引起的浸润性心脏疾病。作为特性疾病,我们试图确定其特发性高度心房(AV)块的患者的患病率,需要永久性起搏器(PPM)。在2019年11月至2021年11月之间,经过PPM植入PPM的70-85岁的连续患者提供了3,3-二磷酸-1,2-二磷酸-1,2-丙二烷二键二羧酸(DPD)扫描。人口统计学,合并症,心电图和成像数据。结果39例患者(男性为79.5%,设备植入76.2(2.9)年)进行了DPD扫描。3/39(7.7%,全男性)的结果与属性(佩鲁吉尼2或3级)一致。平均DPD扫描的人的最大壁厚为19.0 mm(3.6毫米),而阴性扫描的患者为11.4 mm(2.7 mm)(p = 0.06)。所有被诊断为ATTR-CM的患者患有脊柱狭窄,两名患有腕管综合征。结论应在需要永久起搏的老年患者中考虑高度AV块,尤其是在存在左心室肥大,腕管综合征或脊柱狭窄的情况下。
1 伦敦大学伦敦大学学院,伦敦Torrington Place,WC1E 7JE,英国2号2光电研究中心,南安普敦大学,南安普敦大学,SO17 1BJ,英国3英国3,英国3号电子工程系,贝斯校区,Swansea,Sawansea,Savosea,Sa1 and sa1 8ne of Interver,sa1 and Introl,Sa1 8ne of Key,Key,Key of Key of Key kekij Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, People's Republic of China 5 SuperSTEM, SciTech Daresbury Science and Innovation Campus, Block J, Keckwick Lane, Daresbury WA4 4AD, United Kingdom 6 York NanoCentre & Department of Physics, University of York, York YO10 5DD, United Kingdom 7 School of Chemical and Process Engineering and School of Physics and Astronomy,利兹大学,利兹LS2 9JT,英国伦敦大学伦敦大学学院,伦敦Torrington Place,WC1E 7JE,英国2号2光电研究中心,南安普敦大学,南安普敦大学,SO17 1BJ,英国3英国3,英国3号电子工程系,贝斯校区,Swansea,Sawansea,Savosea,Sa1 and sa1 8ne of Interver,sa1 and Introl,Sa1 8ne of Key,Key,Key of Key of Key kekij Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, People's Republic of China 5 SuperSTEM, SciTech Daresbury Science and Innovation Campus, Block J, Keckwick Lane, Daresbury WA4 4AD, United Kingdom 6 York NanoCentre & Department of Physics, University of York, York YO10 5DD, United Kingdom 7 School of Chemical and Process Engineering and School of Physics and Astronomy,利兹大学,利兹LS2 9JT,英国伦敦大学伦敦大学学院,伦敦Torrington Place,WC1E 7JE,英国2号2光电研究中心,南安普敦大学,南安普敦大学,SO17 1BJ,英国3英国3,英国3号电子工程系,贝斯校区,Swansea,Sawansea,Savosea,Sa1 and sa1 8ne of Interver,sa1 and Introl,Sa1 8ne of Key,Key,Key of Key of Key kekij Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, People's Republic of China 5 SuperSTEM, SciTech Daresbury Science and Innovation Campus, Block J, Keckwick Lane, Daresbury WA4 4AD, United Kingdom 6 York NanoCentre & Department of Physics, University of York, York YO10 5DD, United Kingdom 7 School of Chemical and Process Engineering and School of Physics and Astronomy,利兹大学,利兹LS2 9JT,英国伦敦大学伦敦大学学院,伦敦Torrington Place,WC1E 7JE,英国2号2光电研究中心,南安普敦大学,南安普敦大学,SO17 1BJ,英国3英国3,英国3号电子工程系,贝斯校区,Swansea,Sawansea,Savosea,Sa1 and sa1 8ne of Interver,sa1 and Introl,Sa1 8ne of Key,Key,Key of Key of Key kekij Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, People's Republic of China 5 SuperSTEM, SciTech Daresbury Science and Innovation Campus, Block J, Keckwick Lane, Daresbury WA4 4AD, United Kingdom 6 York NanoCentre & Department of Physics, University of York, York YO10 5DD, United Kingdom 7 School of Chemical and Process Engineering and School of Physics and Astronomy,利兹大学,利兹LS2 9JT,英国伦敦大学伦敦大学学院,伦敦Torrington Place,WC1E 7JE,英国2号2光电研究中心,南安普敦大学,南安普敦大学,SO17 1BJ,英国3英国3,英国3号电子工程系,贝斯校区,Swansea,Sawansea,Savosea,Sa1 and sa1 8ne of Interver,sa1 and Introl,Sa1 8ne of Key,Key,Key of Key of Key kekij Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, People's Republic of China 5 SuperSTEM, SciTech Daresbury Science and Innovation Campus, Block J, Keckwick Lane, Daresbury WA4 4AD, United Kingdom 6 York NanoCentre & Department of Physics, University of York, York YO10 5DD, United Kingdom 7 School of Chemical and Process Engineering and School of Physics and Astronomy,利兹大学,利兹LS2 9JT,英国