al。报道说,与TIO 2的68 pm相比,银离子的半径较大130 pm,因此Ag颗粒保留在表面,从而阻止了相变[18]。随着AG浓度的增加,位错密度也会增加。脱位密度可以通过使用公式σ= 1/d2线/NM2确定。在图5中,衍射峰在25.63°,44.54°,64.79°和77.96°上分别对应于(101),(002),(312)和(103)的平面,这代表了钛群的养育酶阶段的形成。分别在38.29°和47.6°下看到金红石相的峰值,这与(211)和(303)(PDF编号01-083-2243)相关。在77.76O和82.19O处金属银的图5-D衍射峰中,并用(022)和(222)的晶体平面生产,这些峰通过(PDF Number 01-073-1774)证实。
摘要:随着空间碎片对卫星运行的威胁越来越大,迫切需要能够在低地球轨道上有效捕获碎片的先进机器人系统。本文介绍了配备静电粘附机制的机械臂的开发和优化,该机械臂专为微重力环境设计。主要目标是设计一种多功能、轻便的机械臂,可以安全地捕获和固定各种类型的碎片,包括非磁性和复合材料。主要特点包括用于适应性抓握的静电粘合垫、用于以最小的机械复杂性增加伸展范围的伸缩式延伸臂以及用于简化碎片检索和处理的可伸缩存储轮廓。通过详细的计算,我们确定了所需的粘合力,以抵消作用在碎片上的惯性和重力,确保即使在较小的卫星机动过程中也能安全捕获。静电充电系统旨在产生足够的粘合力,并计算了电荷要求和垫尺寸以实现安全粘合。本文详细介绍了设计、力计算和组件选择,使机械臂高效、轻便、适应性强,有助于更安全、更有效地清除空间碎片。
纳米技术是研究结构尺寸在1~100纳米范围内的材料性能与应用的科学技术。1981年扫描隧道显微镜发明后,长度为1~100纳米的分子世界诞生了,其最终目的是用原子或分子直接构筑具有特定功能的产品,因此纳米技术是一种利用单个原子或分子制造材料的技术。纳米技术是一门交叉学科和综合学科,研究内容涉及现代科学技术的广阔领域。纳米科学与技术主要包括七个相对独立又相互渗透的学科(纳米系统物理、纳米化学、纳米材料、纳米生物学、纳米电子学、纳米加工和纳米力学)和三个研究领域(纳米材料、纳米器件和纳米尺度检测与表征)。纳米材料的制备与研究是整个纳米技术的基础。其中,纳米物理学和纳米化学是纳米技术的理论基础,纳米电子学是纳米技术的最重要内容。
静电现象在过去几千年来一直为人所知。1600 年,伊丽莎白一世女王的宫廷医师威廉·吉尔伯特爵士撰写了一本科学性很强的静电学描述书,名为《论磁》。然而,从静电过程在工业领域应用的早期开始,就没有一本全面的手册可供该领域的新手阅读,他们既需要入门知识,又需要足够的具体信息来解决眼前的问题。这本手册是由执业工程师和科学家编写的,他们都是各自专业领域的公认专家,旨在尽可能全面、详细地描述静电过程和相关现象,但只用一卷书的篇幅。在需要可靠信息以便立即应用特定主题的个人和希望将本书作为一般性、核心参考资料的人之间的相互竞争需求之间建立了平衡。因此,本书的组织方式是提供我们目前对该领域的理解和公认做法的汇编;方便查阅广泛的全球文献库;并介绍各个学科的专家,他们共同构成了一个独特的资源库。书中包含了足够的背景或“教程”材料,使初次遇到静电相关问题的技术培训人员能够理解这一领域。书中组织了各种主题区域,以帮助读者识别必要的资源材料
本报告是作为由美国政府机构赞助的工作的帐户准备的。美国政府或任何雇员均未对任何信息,设备,产品或流程的准确性,完整性或有用性做出任何法律责任或责任,也不属于任何法律责任或责任,或者承担任何法律责任或责任感,或者表示其使用不会侵犯私有拥有权利。在本文中提及任何特定的商业产品,流程或服务,商标,制造商或以其他方式不一定构成或暗示其认可,推荐或受到美国政府或其任何机构的认可。本文所表达的作者的观点和观点不一定陈述或反映美国政府或任何代理机构的观点和意见。
图 4. 静电逆设计问题包括寻找反应周围带电残基或点电荷的最佳位置,以降低反应势垒。考虑围绕狄尔斯-阿尔德反应的分区球面,分区的每个斑块分配一个电荷密度(蓝色 - 带负电;红色 - 带正电),理论上可能的环境总数是无限的,因为任何一点的电荷都可以是任何实数值,并且分区可以无限精细。这产生了巨大的搜索空间。此外,由于静电环境的各种配置会产生类似的反应势垒,以及可能的解决方案完全改变反应途径,而这在蛋白质中不再可行,因此解决方案将不唯一。Hartke 和 Sokalski 试图通过使用机器学习或最小化给定反应的 𝐸 !"## 来确定最佳催化环境,从而减少这个搜索空间。
ESD 范围 HBM (人体静电模式) ------------------------------------------------------------------------------------------- ± 4kV
完整的作者清单:伊丽莎白的杰吉斯;俄亥俄州立大学,William G. Lowrie化学与生物分子工程系De Araujo Fernandes Jr.,Silvio;俄亥俄州立大学,William G. Lowrie化学与生物分子工程系;俄亥俄州立大学病理学系和医学院神经研究所;俄亥俄州立大学通过工程和科学研究(CCE-CURES)CUI,YIXIAO治愈癌症;俄亥俄州立大学,生物医学工程罗宾斯,阿里尔;俄亥俄州立大学,物理学;俄亥俄州立大学,生物物理学计划,卡洛斯卡斯特罗;俄亥俄州立大学,机械和航空工程;俄亥俄州立大学,生物物理学计划Poirier,迈克尔;俄亥俄州立大学,物理学;俄亥俄州立大学,生物物理学计划Gurcan,Metin; Wake Forest医学院生物医学信息学中心Otero,Jose;俄亥俄州立大学病理学系和医学院神经研究所;俄亥俄州立大学通过工程和科学研究(CCE-CURES)冬季治愈癌症;俄亥俄州立大学,William G. Lowrie化学与生物分子工程系;俄亥俄州立大学,生物医学工程;俄亥俄州立大学通过工程和科学研究(CCE-CURES)治愈癌症;俄亥俄州立大学生物物理学计划
锂离子电池 (LIB)、锂硫 (Li-S) 电池和固态碱金属电池等储能系统被视为便携式设备和电动汽车 (EV) 最有前途的电源 (图 1b)。[1] 随着电子设备和电动汽车需求的快速增长,开发具有长循环寿命和高能量密度的下一代电池迫在眉睫。[2] 储能系统的瓶颈包括结构不稳定、氧化还原动力学缓慢以及电子导电性和活性物质的损失,导致循环寿命短和能量密度低。[3] 例如,高容量负极材料在循环过程中会发生高达 400% 的大体积变化,导致结构不稳定以及电子和离子传输退化。[4] 再比如,Li-S 电池的主要问题是硫正极在循环过程中存在不导电和多硫化物溶解的问题,导致容量低