ﺩ。ﺧﻠﻴﻞ ﺧﻠﻴﻞ1)为了获得材料的高沉积速率,源材料的蒸气压必须为______背景真空压力。1) +高于2) - 低于3) - 等于4) - 所有答案都是正确的2)在微流动器的情况下,带有梳子驱动执行器,这是一个刺激性的__________,在所需的驱动电压中,__________________________________________________________1) - 增加,增加2) - 减少,减少3) +减少,增加4) - 所有答案都是不正确的3)热电器是多个热电偶,在_________中排列,电压输出为__________。1) +平行,系列2) - 系列,平行3) - 系列4) - 平行,平行4)大多数微加速度计基于____________的原理。1) - 静电力2) - 电磁力3) - 热力4) +机械变形5)“由于过热而无法维持持续时间的驱动运动”,”这是______________________________驱动技术的主要缺点。 ___________类型是在开发中溶解的。1) +阳性2) - 负3) - 正或负4) - 所有答案都是不正确的7)硅的湿氧化通常是由于____________而被首选的。1) - 较低的成本2) - Sio2的Beter质量3) +更快的氧化4) - 所有答案都是正确的8)清洁室的班级数量越高。1) - 是。2) + false。9)扩散过程是__________的一个例子。1) - 压力驱动流2) +熵驱动的传输3) - 梯度诱导的流量
摘要:本文综述了有关聚合物在人行道和岩土工程中使用土壤稳定的研究。首先,讨论了影响广泛使用聚合物类别的有效性的特性,包括地球聚合物,生物聚合物和合成有机聚合物。这些包括地球聚合物的前体和活化剂,分子量,粒径,电荷,构象,溶解性,粘度,pH和有机聚合物的水分行为的类型和比率。接下来,本文审查了使用各种聚合物类别的土壤稳定的机制。有机聚合物 - 粘合相互作用的关键机制是静电力和熵的增加,这取决于聚合物是阳离子,中性还是阴离子的不同。另一方面,聚合物与主要由沙子组成的粗粒土壤之间的相互作用主要归因于三种类型的结构变化:覆盖砂颗粒的薄膜,连接了无接触的相邻颗粒的聚合物扎带的形成以及颗粒之间粘附的发展。地球聚合物稳定的机制是通过形成钠和/或钙铝硅酸盐凝胶的形成,该氧化物结合周围的土壤颗粒并将其变成更密集,更牢固的基质。讨论了使用聚合物稳定后土壤类型的工程特性,包括强度提高,渗透率降低,膨胀和收缩抑制以及耐用性和稳定性增强。最后,本文强调了更广泛使用土壤聚合物稳定的挑战,包括有限的评估标准,生命周期成本考虑和水分敏感性。为此,建议对土壤稳定中广泛使用聚合物的一些未来研究方向,包括建立标准测试方案的需要,评估聚合物稳定土壤的原位特性,解决耐用性问题的解决方案以及进一步研究稳定机制的进一步检查。
铁电体 (FE) 具有自发和可切换的电极化,不仅在基础科学领域,而且在器件应用领域都具有重要意义。传统的铁电性,例如钙钛矿氧化物 BaTiO 3 中的铁电性,归因于 Ti d 0 和氧 p 态之间的 pd 杂化,其中长程库仑力优于短程排斥力 [1]。结果,BaTiO 3 中 Ti 偏心位移被诱导,从而破坏了中心对称性。在钙钛矿超晶格如ABO3/A'BO3和层状钙钛矿(ABO3)2(AO)[2-4]中发现的“混合不当”铁电性具有不同的起源,它源于A位上的极性模式与BO6八面体的两个非极性倾斜模式之间的三线性耦合。该机制更多地依赖于晶格的几何形状(即不同层上A阳离子的反极性位移之间的非完全补偿),而不是像传统FE那样依赖于静电力[5,6]。已经提出了不同的方法来操纵铁电性。施加在薄膜上的应变可以影响BaTiO3的电极化,也可以使量子顺电的SrTiO3变为铁电体,甚至提高其转变温度[7,8]。电荷掺杂已被证明是调节铁电性和创造新相的另一种有效方式。在传统铁电材料如 LiNbO 3 和 BaTiO 3 中,可以通过增加掺杂载流子的数量来抑制铁电位移 [9–12]。而在层状钙钛矿的三线性 Ruddlesden-Popper 相中,最近的一项研究表明,在 A 3 Sn 2 O 7 中静电掺杂会导致八面体旋转增加 [13],从而增强极化。由于载流子可以屏蔽长程相互作用并倾向于保持中心对称性,因此铁电性与金属性共存是违反直觉的。这种不寻常的共存直到 2013 年才被发现,当时 LiOsO 3 被认定为第一个“极性金属” [14] − 比它的理论预测晚了六十年 [15]。最近的研究表明,二维拓扑半金属WTe 2 也表现出可切换的极化[16]。
纤维因其优异的拉伸性、透气性和高孔隙率而在诸多领域具有广泛的应用前景。人们已经开发出许多方法来使用各种材料来生产合成纤维,其中,静电纺丝是一种广泛使用且有效的生产微纳米级纤维(纤维直径范围从 2 纳米到几微米)的方法[5]。除静电纺丝外,大多数其他传统的纤维生产方法,如湿纺和干纺、拖曳纺丝、凝胶纺丝和三维 (3D) 打印,都仅依靠机械拉伸或剪切应力来拉伸和变细纤维射流;因此,它们通常很难在不导致纤维断裂的情况下生产出纤维直径小于 10 毫米的超薄纤维[6]。静电纺丝利用强静电力将聚合物溶液或熔体拉伸成细射流,最终形成微/纳米纤维沉积。这种现象最早在一个多世纪前被发现和描述 [ 7 ],但直到 20 世纪初,“静电纺丝”一词才正式提出 [ 8 ]。从那时起,关于这种用途广泛且简单的纤维生产技术的研究一直在显着增长 [ 9 ]。随着材料科学和纳米技术的最新发展,新材料已与静电纺丝技术相结合,例如导电材料、能量产生材料以及生物相容性和生物活性材料。利用这些新材料功能化的电纺微/纳米纤维不仅保留了超薄纤维的物理优点,例如高长宽比、柔韧性、方向性和高孔隙率,而且还开辟了新颖的纤维和纺织设备配置和应用。例如,压电聚合物的使用使一系列本质上灵活和透明的能量收集器和自供电传感器成为可能[10,11]。用聚合物和金属或陶瓷制成的复合材料纤维在新型传感和光电设备中显示出良好的应用潜力[12,13]。同时,这些新兴应用要求对电纺纤维的形貌和图案进行更精确、更方便和定制化的控制。因此,人们努力改进和调整静电纺丝装置和工作条件,并将纤维纺丝与其他先进加工技术(如 3D 打印和微流体)相结合。本章旨在全面描述静电纺丝的最新创新和技术进步。为了让不熟悉静电纺丝的读者有效地阅读本章,我们在开头简要介绍了静电纺丝的物理原理和基本装置设计,然后讨论了
预插入已被广泛应用于其他分层材料(例如钒氧化物),以增强循环时的稳定性。选择充当结构稳定“支柱”的层间客人物种可以调整晶格间距,增强离子迁移率,通过与降低的V离子相关的浅供体水平赋予固有的电导率。38,44 - 48此外,水电池中存在层间水,筛选了嵌入离子和阴极之间的相互作用,从而导致更快的间隔过程。同样,也已经对紧密键合离子进行了前进的前进,以提高基于MN的阴极的性能。20预插离子的效应是每次切割离子和O和增强的结构稳定性之间的静电力。然而,这样的结论太模糊了,并忽略了前进前可能引起的结构转化,这使前插入的工作机理是未探索的区域。需要考虑和讨论结构 - 交换前阳离子和电化行为之间的性能关系。在这项工作中,分别通过SOL - 凝胶和热液方法制备了两种具有不同量K +的K + 2个伴侣。执行了详细的物理和电化学特征,以披露其在组成方面的差异和对电化学行为的影响。用K 0.28 MNO制造的Azibs 2- $ 0.1H 2 O(K 0.28 mo)在100 mA G 1下提供了相对较高的300 mA H G 1的特征。即使在高电流密度为2 A G 1的情况下,Azibs也表现出足够的特异性c c and 100 mA H G 1的能力,并在1000个周期内保持> 95%的容量,这是相关材料的最高水平。26,27相反,用K 0.21 MNO 2 $ 0.1H 2 O(K 0.21 mo)制造的Azib表现出较低的性能。通过系统的外部分析对能量存储机制进行了彻底研究。在整个循环过程中都观察到稳定的D -MNO 2原始相,以及Zn 4 So 4(OH)6 $ 5H 2 O(ZSH)相的可逆沉积/溶解,离子迁移和Mn Valence状态的同时变化。通过密度函数理论(DFT)模拟进一步划定了预介绍的K离子的潜在功能,
作为抗生素的潜在替代品,硫化镉和氧化锌纳米颗粒(CDS和ZnO NPS)分别使用激光消融和直接化学过程创建。硫化镉,去离子水,硝酸锌和氢氧化钠的靶标被用作前体。使用不同的表征技术来表征CD和ZnO NP。X射线衍射用于确认CD和ZnO具有平均晶体尺寸分别为54.16 nm和29.23 nm的多晶结构。ZnO颗粒的直径为51.65 nm的密集填充2D弯曲的纳米曲线,而CDS颗粒的直径为51.65 nm,而CDS颗粒则由来自Fe-Sem图像的34.53 NM NM的球形和半球体形态组成,并具有球形和半球体形态。根据AFM的说法,ZnO和CD的平均晶粒尺寸分别为37.51 nm和79.64 nm。通过FTIR验证了生产的纳米粒子的纯度。ZnO的估计能隙为4.25 eV,CD为2.5 eV。关于革兰氏阳性和革兰氏阴性细菌菌株以及真菌菌株,CD和ZnO NP具有相关的抗微生物敏感性。与表皮链球菌和克雷伯氏菌相比,所产生的纳米粒子的抗细菌活性对金黄色葡萄球菌和大肠杆菌具有更大的抑制作用。但是,念珠菌的值较高39mm。(2024年10月17日收到; 2025年1月4日接受)关键词:CDS,ZnO激光消融,简单化学,表面形态,生物医学1.[6–8]。[10,12]。简介直径为1-100 nm的纳米颗粒(NP)近年来引起了很多关注,因为它们具有各种吸引人的光电,电气和抗细菌功能。因为细菌感染性疾病已经引起了全球关注,这是严重的健康问题,可能会对人类生活的社会,经济和医学方面产生影响。“致病性菌株的暴发和感染增加,细菌抗生素抗性,引入新的细菌突变,缺乏贫困国家的足够疫苗接种以及与医院相关的疾病是对人类的全球健康风险,尤其是儿童的全球健康风险,尤其是在几种生物上使用,包括生物疾病,包括CDS NP的诊断,包括生物疾病,包括生物诊断,并在内组织病理学。众所周知,当材料变小(到纳米级)时,它们的物理,化学和生物学特征会发生重大变化,因为其巨大的表面积,静电力的存在,随之而来的量子尺寸效应等。文献对几种重要的半导体纳米材料的制备和表征进行了详尽的报道,包括CDO,ZNS,CDS,CDSE和CDTE NPS [7,8]。由于其在批量状态下具有出色的光敏性和2.43 eV的宽带间隙能量,因此CDS NP是II-IV组中研究最多的二元硫化剂之一[9]。锌氧化物是半导体,具有较大的带隙3.37 eV。令人惊讶的是,许多调查发现ZnO-NP不会损害人类细胞。氧化锌纳米颗粒(ZnO NP)是一系列生物应用的有趣前景,因为它们的出色稳定性,生物兼容性和低毒性。ZnO纳米颗粒非常有效地针对广泛的微生物,包括细菌,病毒和真菌,因为它们具有特殊的物理化学特征。由于具有这种特征,它们是有效的抗菌剂,对微生物不胡态,并且具有