准确控制两级系统是量子力学中的长期问题。一个这样的量子系统是频率键量置量:一种以两个离散频率模式叠加的单个光子。在这封信中,我们首次证明了对量子频率处理器中频率量矩阵的完全任意控制。我们在数值上建立了针对电形相调节器和脉冲塑料的多种配置的最佳设置,从实验上确认了所有基本旋转的近乎不合格模式转换保真度。单光子水平的性能通过将单个频率键符号旋转到分布在整个Bloch球体上的41点,以及对状态路径的跟踪,然后是可调频率梁分离器的输出,并带有贝叶斯断层扫描,并确认了状态状态忠诚度fρ> 0。98对于所有情况。这样的高保真转换扩大了量子通信中频率编码的实际潜力,在一般量子操作中提供了出色的精度和低噪声。
通道注意机制致力于重新校准通道权重以增强网络的表示能力。然而,主流方法通常仅依赖全局平均池化作为特征压缩器,这显著限制了模型的整体潜力。在本文中,我们研究了神经网络中特征图的统计矩。我们的研究结果强调了高阶矩在增强模型容量方面的关键作用。因此,我们引入了一种灵活而全面的机制,称为广泛矩聚合 (EMA),以捕获全局空间上下文。基于该机制,我们提出了矩通道注意 (MCA) 框架,该框架通过我们的交叉矩卷积 (CMC) 模块有效地整合了多层基于矩的信息,同时最大限度地降低了额外的计算成本。CMC 模块通过逐通道卷积层捕获多阶矩信息以及跨通道特征。MCA 模块设计为轻量级,可轻松集成到各种神经网络架构中。在经典图像分类、目标检测和实例分割任务上的实验结果表明,我们提出的方法取得了最先进的结果,优于现有的通道注意方法。
磁化动力学的轨道分量(例如由铁磁共振 (FMR) 激发的轨道分量)可能在纳米磁性器件中产生“轨道电子”效应。然而,区分轨道动力学和自旋动力学仍然是一个挑战。在这里,我们采用 X 射线磁圆二色性 (XMCD) 来量化 Ni 80 Fe 20 薄膜中 FMR 诱导动力学的轨道分量和自旋分量之间的比率。通过在 Ni L 3 ; 2 边缘应用 XMCD 求和规则,我们获得动态磁化的轨道自旋比为 0.108 6 0.005。该值与静态磁化的 0.102 6 0.008 一致,使用与动态 XMCD 实验相同的 X 射线束配置进行探测。所展示的方法提出了一种可能的途径,可以将轨道电子效应与磁性介质中的自旋电子对应物区分开来。
摘要:量子状态是由无法直接测量相的波函数描述的,但在干扰和纠缠等量子效应中起着至关重要的作用。相对相信息的损失称为折叠,是量子系统与其环境之间的相互作用引起的。变形也可能是通往可靠量子计算的路径上的最大障碍。在这里我们表明,即使在一个孤立的分子中也发生了变质,尽管并非所有相信息都会通过对中央电子自旋量子QPIT与附近核自旋相互作用的原型磁分子中相互作用的理论研究。依赖分子的残留相干性为提议解释实验的核自旋差屏障提供了微观合理化。附近分子对破裂性的贡献对分离有非平凡的依赖性,在中间距离处达到峰值。分子仅影响长期行为。由于残差相干性很容易计算和与连贯性时间良好相关,因此可以用作磁分子中连贯性的描述符。这项工作将有助于建立设计原理,以增强分子旋转量子的连贯性,并有助于激发进一步的理论工作。
关键词:免疫疗法,头部和颈部鳞状细胞癌,HNSCC,昼夜节律摘要:适应性免疫反应在生理上受昼夜节律调节。肺癌和黑色素瘤恶性肿瘤中的数据表明,当天早些时候的免疫疗法输注可能与改善的反应有关。但是,尚不清楚HNSCC患者的最佳给药时间。我们旨在评估HNSCC患者的免疫疗法输注时间与总体生存时间(OS)和无进展生存期(PFS)的关联,这是在机构审查董事会批准的回顾性队列研究中。113例患者遇到的研究纳入标准,并将98例患者纳入了倾向评分匹配的队列中。在完整的无与伦比的队列中(n = 113),每增加20%的输注量在1500H后接受OS危险比(HR)为1.35(95%C.I.1.2-1.6; p-value = 0.0003)和A PFS HR和A PFS HR(95%
早期生活压力 (ELS) 和重度抑郁症 (MDD) 具有共同的神经网络异常。然而,尚不清楚 ELS 和 MDD 如何单独和/或共同与大脑网络相关,以及患有和不患有 ELS 的抑郁症患者之间是否存在神经差异。此外,先前的研究评估了静态与动态网络属性,这是一个关键的空白,因为大脑网络会随着时间的推移显示协调活动的变化。71 名未接受药物治疗的女性,有或没有童年性虐待 (CSA) 史和/或 MDD,完成了静息状态扫描和压力任务,其中收集了皮质醇和情感评分。检查了重复的功能网络共激活模式 (CAP),并计算了 CAP 中的时间(每个 CAP 表达的次数)和转换频率(不同 CAP 之间的转换)。检查了 MDD 和 CSA 对 CAP 指标的影响,并将 CAP 指标与抑郁和压力相关变量相关联。结果表明,MDD 与 CAP 指标相关,但 CSA 与 CAP 指标无关。具体而言,与 HC(N = 36)相比,患有 MDD(N = 35)的个体在后默认模式 (DMN)-额顶网络 (FPN) CAP 中花费的时间更多,并且在后 DMN-FPN 和原型 DMN CAP 之间转换的频率更高。在各个组中,在后 DMN-FPN CAP 中花费的时间越多,DMN-FPN 和原型 DMN CAP 转换频率越高,反刍的频率就越高。DMN 和 FPN 之间的不平衡似乎是 MDD 的核心,可能导致与 MDD 相关的认知功能障碍,包括反刍。出乎意料的是,CSA 并没有调节此类功能障碍,这一发现需要在未来样本量更大的研究中进行复制。
神经反馈训练 (NFT) 为现代医学界做出了有益的贡献。NFT 是基于操作性条件作用原理的生物反馈的一个子集。它是一种建立行为与效果之间关系的学习方法,可获得奖励和惩罚 (Cherry, 2020; Engelbregt 等人, 2016; Strehl, 2014)。从理论上讲,生物反馈是自动神经系统 (ANS) 的生物学见解。在其起源之前,“实时生理镜像”一词在第二次世界大战期间就已存在 (Sattar & Valdiya, 2017)。它仅限于心率、血压、皮肤温度、消化、呼吸和性唤起等生理过程。所有示例都是非自愿的,由 ANS 控制。在 1950 年代,一个反对的科学家团队不赞成 ANS 可能影响人类生理和心理状态的想法,这些状态也会对生物过程起作用 (Jones, 2016)。它在操作性条件、信息处理或技能学习方面仍存在疑问。此外,该假设不足以作为药物治疗的基础(Sattar & Valdiya,2017;Jones,2016)。研究人员在 20 世纪 60 年代发现,ANS 功能可能会发生类似于操作性环境的改变。因此,这是一个将生物反馈转变为可用于医疗实践的适当治疗方法的机会。
摘要。核自旋能级在理解镧系元素单分子磁体中的磁化动力学以及量子比特的实现和控制方面起着重要作用。我们使用包括自旋轨道相互作用在内的多配置从头算方法(超越密度泛函理论)研究了阴离子 DyPc 2(Pc=酞菁)单分子磁体中 161 Dy 和 163 Dy 核的超精细和核四极相互作用。之所以选择 Dy 的两种同位素,是因为其他同位素的核自旋为零。这两种同位素的核自旋 I = 5 / 2,尽管核磁矩的大小和符号彼此不同。电子基态和第一激发的 Kramers 双线之间的巨大能隙使我们能够将微观超精细和四极相互作用汉密尔顿量映射到电子伪自旋 S eeff = 1 / 2 的有效汉密尔顿量上,这对应于基态 Kramers 双线。我们的从头算表明,核自旋和电子轨道角动量之间的耦合对超精细相互作用贡献最大,并且 161 Dy 和 163 Dy 核的超精细和核四极子相互作用都比 TbPc 2 单分子磁体中的 159 Tb 核的要小得多。计算出的电子-核能级分离与 163 DyPc 2 的实验数据相当。我们证明 Dy Kramers 离子的超精细相互作用会导致零场下的隧道分裂(或磁化的量子隧穿)。这种效应不会发生在 TbPc 2 单分子磁体中。发现 161 DyPc 2 和 163 DyPc 2 避免的能级交叉的磁场值明显不同,这可以从实验中观察到。
随机量子电路和随机电路采样 (RCS) 最近引起了量子信息界所有子领域的极大关注,尤其是在谷歌于 2019 年宣布量子霸权之后。虽然 RCS 科学吸收了从纯数学到电子工程等不同学科的思想,但本论文从理论计算机科学的角度探讨了这一主题。我们首先对随机量子电路的 t 设计和反集中特性进行严格处理,以便各种中间引理将在后续讨论中找到进一步的应用。具体而言,我们证明了形式为 EV ⟨ 0 n | V σ p V † | 0 n ⟩ 2 的表达式的新上限,其中 1D 随机量子电路 V 和 n 量子比特泡利算子 σ p 。接下来,我们将从高层次讨论 RCS 至上猜想,该猜想构成了复杂性理论的主要基础,支持了以下观点:深度随机量子电路可能与任意量子电路一样难以进行经典模拟。最后,我们研究了量子和经典欺骗算法在线性交叉熵基准 (XEB) 上的性能,这是 Google 为验证 RCS 实验而提出的统计测试。我们考虑了 Barak、Chou 和 Gao 最近提出的经典算法的扩展,并尝试证明扩展算法可以获得更高的 XEB 分数 [BCG20]。虽然我们无法证明具有 Haar 随机 2 量子比特门的随机量子电路的关键猜想,但我们确实在其他相关设置中建立了结果,包括 Haar 随机幺正、随机 Cliūford 电路和随机费米子高斯幺正。