awnon bhowmik *独立研究员电子邮件:awnonbhowmik@outlook.com orcid id:https://orcid.org/0000-0000-0001-5858-5417 *接收到的作者接收到:2023年9月10日;修订:2023年10月7日;接受:2023年12月16日;发表:2024年2月8日摘要:在加密系统的基岩中,陷入困境,是决定加密机制的安全性和功效的基本构建块。这些功能作为单向变换,证明了固有的不对称性:它们被设计为在一个方向上易于计算,同时证明了相反方向的计算挑战(即使不是不可行)。本文通过引入新型的陷阱门功能,为加密研究的不断发展的景观做出了贡献,从而提供了有关加密协议中计算效率和安全性之间复杂平衡的新观点。
读数必需的教科书:[HRI]人类机器人互动,C。Bartneck,C.Bartneck,Cambridge,2020 ISBN:9781108735407(官方PDF版本在https://www.human-robotactraction.org/pre of https://www.human-robotactact.org/) ISBN:9780262524315(将从本教科书中分配读数。)[AC]情感计算,R。Picard,MIT出版社,1997年ISBN:97802626661157
II型糖尿病(T2DM)显着影响生活质量(QOL),但在马拉维的这些患者中的数据缺乏。进行了这项研究以评估T2DM患者的QOL。在马拉维利隆威的Kamuzu Central医院(KCH)进行了一项混合方法横截面研究。使用改良的糖尿病生活质量(MDQOL)-17问卷进行定量数据,而深入的访谈和日记方法用于定性数据,进行了数据收集。使用描述性统计数据和推论统计数据使用t检验和ANOVA总结了人口统计数据。主题分析用于定性数据。招募了339名参与者的样本(平均年龄50.3±15.5)。总体而言,平均QOL得分中等(平均QOL 63.91±19.54)。健康保险的人的质量更好(QOL 76.71,C.I。69.22–84.19,p值0.005)与没有健康保险的人相比。此外,没有合并症与具有更好的QoL有关(QOL 71.18,C.I。66.69–75.67,p值<0.0001)。定性地,T2DM与患者的健康状况,压力水平升高以及独立丧失有关。T2DM患者(例如糖尿病健康谈判,有一个支持家庭)以及遵循医院建议的T2DM患者中有QOL促进因素。抑制因素包括药物短缺,社会看法,久坐的生活方式,压力和鄙视医院的建议。在KCH接受治疗的T2DM患者的总体QOL中等。在KCH接受治疗的T2DM患者的总体QOL中等。受相互关联的因素的影响,这些因素需要多学科团队护理以优化这些患者的QOL。卫生工作者需要在治疗T2DM患者(例如管理合并症以及评估QOL,诸如体育锻炼之类的行为改变措施和健康饮食)时采用整体方法。
2型糖尿病(T2DM)估计会影响全球超过4亿人[1]。此外,到2050年,糖尿病的发病率预计将增加和影响三分之一的人[2]。考虑其慢性并发症和死亡率,对T2 DM的病理生理学和治疗的研究也在增加。肌动物在肌肉水平上与胰岛素抵抗有关的肌动物一直是糖尿病病理生理学的各种研究的主题[3]。这些肌动物中的一种,三瓜蛋白53(MG53),也称为TRIM72,是一种属于三方基序(Trim)家族的多孔蛋白,在骨骼和心脏肌肉中大量表达[4]。除了其重要的生理作用外,MG53还被证明是各种疾病的重要致病因素[5]。例如,MG53通过参与心脏,骨骼肌和其他组织的细胞膜修复来维持心脏和骨骼肌完整性[6,7]。细胞内MG53的急性升高还具有针对心肌缺血/再灌注损伤的保护作用[8]。尽管已阐明了其作为膜修复蛋白的重要功能[9],但MG53在许多代谢过程中的作用,尤其是在胰岛素信号通路中,这是很困难的。尽管动物模型中临床前研究的一些研究结果表明,MG53上调可能通过在骨骼肌中引起胰岛素抵抗而导致代谢性疾病,例如T2 DM和肥胖[10,11],但也有相反结果的研究。尽管假设MG53升高可能是T2 DM的致病因素[10],但许多研究尚未建立胰岛素抵抗和MG53之间的因果关系[12-14]。因此,MG53已被证明对许多疾病既有益和负面影响。迄今为止,在动物模型中,几乎所有关于MG53与胰岛素敏感性和DM相关的研究。尽管临床前研究矛盾,但已建议MG53是动物模型中糖尿病的一种新型致病因素。观察人类研究中其与糖尿病,糖尿病并发症和血糖控制的关系可能为治疗2型糖尿病及其并发症的新途径开辟了新的途径。在我们的研究中,我们的目的是检查患者组2型DM的患者组诊断与没有代谢综合征和糖尿病的健康对照组之间的血清MG53水平差异,并确定患者组中糖尿病并发症与血糖控制和MG53水平之间的关系。
就已知的生物多样性和生活方式而言,昆虫和寄生虫主宰着生物圈。因此,昆虫在许多宿主-寄生虫系统中发挥作用,要么作为寄生虫,要么作为宿主,或者两者兼而有之。此外,许多此类系统涉及适应性寄生虫诱导的宿主表型变化(通常是行为或形态),这通常称为宿主操纵。虽然在过去几十年中已经描述了许多宿主操纵系统,但支撑宿主表型变化的近因机制仍然很大程度上未知。鉴于宿主-寄生虫系统密切的共同进化历史,梳理宿主操纵中涉及的复杂生化反应网络需要整合各种互补技术。从这个角度来看,我们强调宿主操纵的多学科研究的重要性,例如高通量测序方法(基因组学和转录组学)以寻找在操纵事件期间激活的候选机制。然后,我们认为基因编辑技术,特别是 CRISPR-Cas9 系统,是测试候选机制在寄生虫和宿主中功能作用的有效方法。最后,鉴于迄今为止发现的独特宿主-寄生虫系统的多样性,确实有巨大的潜力来创建新的非传统模型系统,从而大大扩展我们测试行为和行为调节基本方面的能力。
完整作者列表:Kumar, Gaurav;德里大学 - 南校区,生物化学 Saini, Manisha;德里大学 - 南校区,生物化学 Kundu, Suman;德里大学 - 南校区,生物化学
摘要:通过将多种能源载体与相关技术相结合,多能源系统 (MES) 可以利用它们相互作用产生的协同效应,实现脱碳的多种益处。在这样的背景下,在可再生电力供应过剩时期纳入 Power-to-X 技术,可以消除削减可再生电力发电的需要。为了在不忽视 MES 的经济可行性的情况下实现其环境效益,优化设计问题至关重要且具有挑战性,需要采用多目标方法。本文扩展了前人的研究成果,通过研究基于氢的非传统光伏电力存储,实现 MES 的生态能源优化。所研究的系统由可逆燃料电池 (r-SOC)、光伏 (PV)、电热泵、吸收式制冷机和热存储组成,可满足住宅终端用户的多能源需求。建立了一个多目标线性问题来寻找最佳 MES 配置,包括所涉及技术的规模,目标是降低年度总成本和化石一次能源投入。将模拟结果与之前使用传统纳米电网的研究结果进行了比较,其中采用燃气内燃机和电池的热电联产 (CHP) 系统代替 r-SOC。与传统纳米电网相比,非传统纳米电网的优化配置可实现最大 66.3% 的一次能源减少。面对环境效益,非传统纳米电网导致年度总成本增加,与传统纳米电网相比,增加幅度在 41-65% 之间。