在医学成像中,表面配准被广泛用于对解剖结构进行系统比较,一个典型的例子是高度复杂的大脑皮层表面。为了获得有意义的配准,一种常见的方法是识别表面上的突出特征,并在它们之间建立低失真映射,将特征对应关系编码为界标约束。之前的配准工作主要集中在使用手动标记的界标和解决高度非线性的优化问题,这非常耗时,因此阻碍了实际应用。在这项工作中,我们提出了一种使用准共形几何和卷积神经网络自动检测和配准大脑皮层表面界标的新框架。我们首先开发了一个界标检测网络 (LD-Net),该网络允许根据表面几何形状在给定两个规定的起点和终点的情况下自动提取界标曲线。然后,我们利用检测到的界标和准共形理论实现表面配准。具体来说,我们开发了一个系数预测网络 (CP-Net),用于预测与所需基于地标的配准相关的 Beltrami 系数,以及一个名为磁盘 Beltrami 求解器网络 (DBS-Net) 的映射网络,用于从预测的 Beltrami 系数生成准共形映射,其中双射性由准共形理论保证。实验结果证明了我们提出的框架的有效性。总之,我们的工作为基于表面的形态测量和医学形状分析开辟了新途径。
在基于现代模型的控制框架中,例如模型预测控制或基于模型的信息学习学习,机器学习已成为一种无处不在的技术类别,以提高动态模型的准确性。通过利用诸如神经网络之类的表现力体系结构,这些框架旨在通过构建系统动力学的准确数据驱动表示,旨在提高系统的模型精度和控制性能。尽管对其非学习顾问进行了显着的绩效提高,但对于这些基于模型的模型的基于模型的控制器在不确定性的存在下,这些模型的控制器通常几乎没有保证。尤其是在模拟误差,噪声和外源性干扰的影响下,确定这些学习模型的准确性是一项挑战。在某些情况下,甚至可能违反约束,使控制器不安全。在这项工作中,我们提出了一个新颖的框架,该框架可以应用于大量的基于模型的控制器,并通过以在线和模块化方式鲁棒化基于模型的控制器,从而减轻上述问题,并在模型的准确性和约束满意度上提供可证明的保证。该框架首先部署保形预测,以生成有限的,可证明的有效的不确定性区域,以无分配方式为动态模型。通过动态约束程序,这些不确定性区域被纳入约束中。关键字:基于学习的控制,基于模型的控制,不确定性量化1。(2023a))。Jiahao等。Jiahao等。与预测参考生成器的配方一起,生成了一组可鲁棒的参考传播,并将其纳入基于模型的控制器中。使用两个实际的案例研究,我们证明我们提出的方法不仅产生了良好的不良区域,这些区域建立了模型的准确性,而且还使闭环系统以强大但不保守的方式满足约束。简介由于非线性优化框架的最新进展以及计算资源的可用性增加,在广泛的域上应用基于模型的控制器的应用趋势是趋势。,用于建筑物中的温度控制(Yao和Shekhar(2021)),用于自动驾驶汽车(Wu等人(2022))和四型控制(Chee等人机器学习方法的扩散同时导致了学习增强的,基于模型的控制框架的发展,这些框架利用学习工具通过改进动态模型来提高控制性能,例如(2023)。尽管这些发展激增,但这些基于学习的控制框架在不确定性存在下如何执行的问题仍然是一个积极的研究主题(Mesbah等人。(2022); Brunke等。(2022))。在这项工作中,我们通过提出一个新颖的框架来解决这个问题,该框架系统地允许基于模型的控制器在模型不匹配,噪声和外部干扰的集体影响下稳健地满足约束。
X-ON Electronics 最大的电气和电子元件供应商 点击查看 LED 显示驱动器类别的类似产品: 点击查看 Winsemi 制造商的产品: 其他 类似产品如下:
摘要 - 在本文中,我们通过开发神经网络模型来大大扩展了机器人执行后续任务和该任务的变化的能力,从而从观察到的人类运动历史上预测未来的人类运动。我们提出了一个非自动回忆的变压器架构,以利用其并行性质,以便在测试时更容易训练和快速,准确的预测。所提出的结构将Human运动预测分为两个部分:1)人类轨迹,这是髋关节随时间的3D位置,以及2)人类姿势,这是所有其他关节在时间上相对于固定髋关节的3D位置。我们建议同时做出两个预测,因为共享表示可以改善模型性能。因此,该模型由两组编码器和解码器组成。首先,应用于编码器输出的多头注意模块改善了人类轨迹。第二,应用于与解码器输出相连的编码器输出的另一个多头自我发项模块有助于学习时间依赖性。我们的模型在测试准确性和速度方面非常适合机器人应用,并且相对于最先进的方法进行了比较。我们通过机器人后续任务证明了我们作品的现实适用性,这是我们提议的模型充满挑战而实用的案例研究。我们的模型预测的人类运动使机器人可以在情况下进行详细的人类运动,例如静止不动,即站立。它还使简单的控制策略能够琐碎地概括到人类关注的许多不同变化,例如后续行动。我们的代码和数据可在以下github页面上获得:https://github.com/mmahdavian/stpotr
这项工作得到了内蒙古自治区的自然科学基金会项目(编号2019MS08024)抽象非小细胞肺癌(NSCLC是最常见的组织学肺癌类型,在诊断时约有66%的患者中与远处转移有关。大脑是转移的常见部位,在初始诊断时,大约13%的患者在颅内受累。这严重影响了生活质量,并导致预后不良。驱动基因阳性NSCLC脑转移患者的靶向治疗可实现更好的颅内控制率;但是,使用驱动基因阴性NSCLC脑转移的患者的治疗选择有限。近年来,随着免疫疗法的扩展,免疫检查点抑制剂(ICI)已被广泛用于临床实践。ICI与放射疗法结合的治疗方式在治疗驱动基因阴性NSCLC脑转移的患者方面有望。本文回顾了敏感驱动器基因阴性NSCLC脑转移患者的放射治疗与免疫疗法的临床研究进度,目的是为可用的临床治疗方案提供参考。
进球3进球1:校园目标#1:增加得分的6-8年级学生的百分比在Staar(德克萨斯州评估学术准备就绪的评估)上的年级或更高的人数从2025年8月到2025年8月。3目标2:校园将增加在2025年8月到2025年8月的STAAR数学成绩达到年级或更高的6-8年级学生的百分比。5目标3:AJB将开展活动,使学生在高中时满足大学,职业和军事准备(CCMR)要求。6进球4:校园将建立一个蓬勃发展的学习社区,如校园平衡计分中的80或更高分数所示。6目标5:校园将提高组织健康清单(OHI)确定的员工满意度。7目标6:校园将改善由净促销者得分确定的学生,员工,父母和社区感知。9进球7:校园将在2025年8月之前对A或B进行评级。10
此信息和资源收集支持现成的学校,俄勒冈州教育部(ODE)于2021年发行的安全学习者弹性框架。本文档着重于通过最关键的形成性评估实践来满足学习者的学术需求。形成性评估是平衡评估系统的关键组成部分,极大地影响了学生的成就。引起,解释和使用证据作为正在进行的教学和学习的一部分,使教育者和学生可以调整使学生从当前的理解水平转移到展示预期的学习成果。研究支持的形成性评估是一个强大的学习过程;这不同于简化或包装的形成性评估版本,这些版本具有小型测试或测验,或孤立的反馈策略,例如“退出票”或“五个拳头”。形成性评估可能包括这种成分,但是一个以持续改进为基础的更为复杂,多维教学周期。此处仅解释了形成性评估的最关键维度;下面引用的OFAST课程可更深入地了解完整的形成性评估过程。本文档将有助于:
摘要 - 安全至关重要的感知系统都需要可靠的不确定性量化和原则上的弃权机械,以在不同的操作条件下保持安全性。我们提出了一个新颖的双阈值共形框架,该框架可提供统计保证的不确定性估计,同时在高风险场景中实现选择性预测。我们的ap-proch唯一结合了共形阈值,以确保有效的预测集和通过ROC分析优化的弃用阈值,从而提供无分布的覆盖范围保证(≥1-α),同时识别不可靠的预测。通过对CIFAR-100,ImagEnet1k和ModelNet40数据集进行全面评估,我们在不同的环境扰动下展示了跨摄像头和激光痛的较高鲁棒性。该框架在严重的条件下达到了出色的检测性能(AUC:0.993→0.995),同时保持高覆盖率(> 90.0%),并实现适应性弃权(13.5%→63.4%±0.5),作为环境严重程度。对于基于激光雷达的感知,我们的方法表现出特别强大的表现,保持了强大的共识(> 84.5%),同时适当弃权不可靠的预测。值得注意的是,该框架在重扰动下显示出显着的稳定性,检测性能(AUC:0.995±0.001)在所有模式中的现有方法都显着超过现有方法。我们的统一方法弥合了理论保证和实际部署需求之间的差距,为在挑战性的现实世界中运行的安全至关重要的自主系统提供了强有力的解决方案。代码可在https://github.com/divake/conformal预测基于传感器的信任可达检测