2凸式23 2.1基础:压缩感应。。。。。。。。。。。。。。。。。。25 2.1.1凸介:原理。。。。。。。。。。。。。。。。25 2.1.2直觉。。。。。。。。。。。。。。。。。。。。。。。。。。25 2.1.3在有限的等轴测图下保证紧密度。。。。。29 2.2低级矩阵恢复。。。。。。。。。。。。。。。。。。。。30 2.2.1凸质:原理。。。。。。。。。。。。。。。。。。。。31 2.2.2在受限的等轴测图下保证紧密度。33 2.2.3没有限制等轴测的问题。。。。。。。。。。35 2.3超分辨率。。。。。。。。。。。。。。。。。。。。。。。。。。40 2.3.1通过总变化规范进行凸介。 。 。 40 2.3.2无限制的等轴测特性。 。 。 。 。 。 。 。 。 。 。 。 。 43 2.3.3通过双证书正确性。 。 。 。 。 。 。 。 。 。 。 。 。 4440 2.3.1通过总变化规范进行凸介。。。40 2.3.2无限制的等轴测特性。。。。。。。。。。。。。43 2.3.3通过双证书正确性。。。。。。。。。。。。。44
∗ 斯坦福大学和拍卖学。电子邮件:milgrom@stanford.edu † 斯坦福大学和拍卖学。电子邮件:mwatt@stanford.edu。感谢 Mohammad Akbarpour、Martin Bichler、Robert Day、Ravi Jagadeesan、Fuhito Kojima、Shoshana Vasserman 以及斯坦福大学、苏黎世大学、NBER 市场设计工作组、西蒙斯劳弗数学科学研究所和第 32 届石溪国际博弈论会议的研讨会参与者,以及对本项目提出的有益意见和建议的审稿人。本文的扩展摘要发表在第 23 届 ACM 经济与计算会议 (EC'22) 的论文集上,2022 年 7 月 11 日至 15 日,美国科罗拉多州博尔德,题为“无凸性市场的线性定价机制”。本文的早期草稿以“非凸经济的瓦尔拉斯机制和约束形式第一福利定理”为题发表。米尔格罗姆感谢美国国家科学基金会 (拨款编号 SES-1947514) 的支持。瓦特感谢斯坦福大学 Koret 奖学金、Ric Weiland 研究生奖学金和 Gale and Steve Kohlhagen 经济学奖学金的支持。
EEG信号的时间,频率和空间信息对于运动图像解码至关重要(Zheng等,2022)。因此,已经广泛研究了基于时间频率空间特征的运动图像解码(Chen等,2023)。In the process of temporal- frequency-spatial feature extraction, the original EEG signals are first decomposed into multiple time-frequency units, then the common spatial pattern (CSP) algorithm is used to extract the spatial features on each time-frequency unit, and finally, the spatial features of multiple time-frequency units are cascaded into a feature vector ( Miao et al., 2021 ), which significantly increases脑电图的特征维度。特征尺寸的数量超过一百甚至几百,而特征冗余。此外,由于收集脑电图样本的困难和高成本,尤其是对于患者,样本量通常相对较小,通常只有几十个。因此,时间频率空间特征是高维小样本数据,它将为EEG分类模型带来一系列问题,例如过度拟合和模型解决方案的问题不确定(Chadebec等,2022)。