量子计算的一个基本模型是可编程量子门阵列。这是一种量子处理器,由程序状态提供信息,该程序状态会在输入状态上引发相应的量子操作。虽然可编程,但已知该模型的任何有限维设计都是非通用的,这意味着处理器无法完美模拟输入上的任意量子通道。表征模拟的接近程度并找到最佳程序状态在过去 20 年里一直是悬而未决的问题。在这里,我们通过展示寻找最佳程序状态是一个凸优化问题来回答这些问题,该问题可以通过机器学习中常用的半有限规划和基于梯度的方法来解决。我们将这个一般结果应用于不同类型的处理器,从基于量子隐形传态的浅层设计到依赖于基于端口的隐形传态和参数量子电路的更深层方案。
输入数据: 1 ) i = 0 时刻: H (0) = 0 , M (0) = 0 , H m = 0 2 )磁化周期 0 — T 各时刻的磁密 B ( t ) 3 )模型初始参数及动态参数 R 、 v 、 α 、 k 对应函数 4 )磁化反转点磁密存储序列 [ B m (1), ⋅⋅⋅ , B m ( z )]
因此,鉴于这一需求,本论文研究的重点是创建一种方法,用于预测受到平面内和平面外载荷的凸耳接头的疲劳寿命。这项研究是与 GKN Fokker Aerostructures 合作进行的。当前的疲劳预测方法都是基于轴向载荷的凸耳。从概念上讲,这种方法应用了 Larsson 关系,该关系通过某些校正系数将任意凸耳的标称应力与参考凸耳联系起来。然后将凸耳的标称应力应用于 S-N 曲线,从而得出失效前的循环数(疲劳寿命)。Fokker 在其技术手册 3(TH3)中描述了这种方法。然而,Larsson 和 TH3 都没有考虑斜向和/或平面外载荷的凸耳来预测疲劳寿命。已经对斜向载荷的凸耳进行了一些研究,但这些研究的主要重点是峰值应力位置和应力集中因子 (SCF) 的计算。在公开报告的研究中没有发现关于平面外负载凸耳的信息。
没有人类驾驶员的干预,并与其他车辆和/或基础设施以及其他设备2进行通信2。美国运输部总结了将CAV技术引入运输系统3:道路安全,经济和社会福利,能源效率和公共流动性的四个主要潜在好处。CAV技术为驾驶员/车辆和交通基础设施创造了一个新的环境,以在现实世界中进行交互。在这种环境中,连接起着至关重要的作用,无线通信使车辆能够相互通信(V2V)以及基础架构(V2I)(v2i)关于实时车辆位置,速度,加速度和其他数据。这些实时数据的可用性为CAVS提供了协调交通相互作用的机会,以使交通相互作用,以最大程度地提高燃油效率并减少碰撞4。猜测对自动运输系统进行了实质性转变,已经进行了许多研究,以调查涉及CAV应用程序的挑战和机会5,6,7,8。例如,橡树岭国家实验室9正在开发用于CAVS应用程序的实时移动控制系统(RTMC),其中包括流量数据管理,路线计划,集中式通信和可视化。已经证明,可以使用交通信号阶段和计时(SPAT)信息来提高车辆燃油效率以协调车辆操作10。还已经确定,可以通过解决相关的最佳控制问题4来确定车辆的最佳速度方案。然而,尽管许多研究人员已经证明了使用SPAT信息来优化燃油经济性的潜力,但大多数努力都集中在提高单个车辆的性能并发出信号计时控制11,12。此外,相关作品主要集中于为CAV生成可行的轨迹,同时忽略了以计算效率和保证收敛性来实时执行生成的轨迹。骑士的运动控制系统是安全至关重要的,并严重依赖于车载算法。需要对操作的实时更新,以应对周围环境的动态。尽管已经提出了许多方法来获得轨迹的轨迹,但由于高计算成本,无法保证最佳解决方案,并且无法应付非凸运动限制和动态环境,因此它们的优化方法不适合现实世界实施。13,14。本文将通过开发一种基于凸优化的新型方法来满足这种需求,该方法使用SPAT信息产生速度曲线。具有多项式解决方案时间和全球最佳收敛的优点,凸优化方法对于车载应用非常有前途。这项研究的贡献是三倍。首先,提出的顺序凸编程(SCP)算法解决了非线性和非凸的最佳速度控制问题,并确保收敛性和多项式解决方案时间在解决每个步骤中解决凸的问题时。本文的其余部分如下:第2节对相关工作进行了简要审查。第二,我们利用伪搭配方法与线路搜索和信任区域技术结合使用,从根本上改善了提出的SCP算法,以提高准确性,更好的实时和融合性能。第三,得益于高级计算效率,该提出的方法实现了实时模型预测控制(MPC)框架,并对动态交通环境的即时响应,以避免碰撞和车辆协调。第3节描述了本研究中考虑的系统动力学和最佳控制问题。第4节介绍了一种新方法,该方法确定了在信号走廊中行驶的骑士的最佳车辆速度轮廓。第5节通过模拟结果和比较证明了拟议方法的性能和有效性。第6节总结了本文的工作。
c) 人工智能参与者应根据其角色、环境和能力,持续对人工智能系统生命周期的每个阶段应用系统的风险管理方法,并在适当情况下采取负责任的商业实践来应对与人工智能系统相关的风险,包括通过不同人工智能参与者、人工智能知识和人工智能资源提供者、人工智能系统用户和其他利益相关者之间的合作。风险包括与人权相关的风险,例如安全、保障和隐私、劳工权利和知识产权,以及有害偏见。
6 Shinpo,Fumio,“为什么要有‘机器人法’?”机器人法律协会成立筹备研究会报告(2015年10月11日)(2015年)。有关这些原则的详情,请参阅新浦文雄的《机器人法:法律领域问题的鸟瞰图》,《信息法研究》,第 9 卷,第 65-78 页(2017 年)和新浦文雄的《日本主要人工智能以及机器人战略和建立基本原则的研究,人工智能法律研究手册,Woodrow Barfield、Ugo Pagallo(编),Edward Elgar Publishing(2018)第 114-142 页,Jacob Turner,R OBOT规则:规范人工智能,Palgrave Macmillan;第一版。(2019 年)。7 规范欧洲新兴机器人技术:机器人技术面临的法律和伦理,FP7-SCIENCE-IN-SOCIETY-2011-1,项目编号:289092.8《深度剖析/成立律师协会有困难吗?“机器人的‘社会化推进’面临诸多挑战,业内人士表达异议”,日刊工业新闻,2016 年 1 月 18 日 https://www.nikkan.co.jp/articles/view/00371272 。
目录 章 页码 1. 介绍................................................................................................................ 1 2. 理论................................................................................................................... 6 2.1 直轴和交轴................................................................................................... 6 2.2 等效电路................................................................................................... 8 2.3 功率角特性................................................................................................... 9 3. 设计参数...................................................................................................... 11 3.1 气隙...................................................................................................... 11 3.2 磁通密度...................................................................................................... 12 3.3 定子和励磁绕组...................................................................................... 12 3.4 波形...................................................................................................... 13 3.5 电抗...................................................................................................... 13 3. 转子设计............................................................................................................. 15 4.1 机械...................................................................................................... 15 4.1.1 励磁绕组.
保留培训数据的隐私已成为一个重要的考虑因素,现在对于机器学习算法来说是一项艰巨的任务。要解决隐私问题,依从于密码学的差异隐私(DP)(Dwork等,2006)是一个强大的数学保存计划。它允许进行丰富的统计和机器学习分析,现在正成为私人数据分析的事实上的符号。保证差异隐私的方法已被广泛研究,最近在行业中采用(Tang等,2017; Ding等,2017)。作为机器学习和差异隐私社区中最重要的问题之一,在过去的十年中,DP模型中的经验风险最小化问题(即DP-erm)在(Chaudhuri等人,2011年)开始,已经在过去的十年中进行了很好的研究,例如(Bassily等,2014; Bassily等,2014; Wang et ant; Jin,2016年,Kifer等人,2017年,Wang等人,2018a,2019b;dp-dp-erm,其人口(或预期)版本,即私人的固定式凸优化(DP-SCO),近年来从(Bassily等,2014)开始受到很多关注。特定于(Bassily等,2019)首先提供了DP-SCO的最佳速率,具有(ϵ,δ)-DP的一般凸损耗函数,这与DP-MERM中最佳速率不同。后来(Feldman等,2020)通过提供一般性定位技术,将此问题扩展到强烈凸出和(或)非平滑案例。此外,如果损耗函数平滑,它们的方法具有线性时间复杂性。对于非平滑损失函数,(Kulkarni等,2021)最近提出了一种仅需要亚限级梯度复杂性的新方法。虽然已经有大量有关DP-SCO的研究,但问题仍然远远不够知名度。一个关键的观察结果是,所有以前的作品仅着眼于损失函数是一般凸或强凸的情况。但是,还有许多问题甚至比强凸功能强,或者落在凸功能和强烈凸功能之间。在非私人对应物中,各种研究试图通过对损失函数施加其他假设来获得更快的速度。并且已经表明,实现比一般凸损失函数速率快的速率确实可以(Yang等,2018; Koren and Levy,2015; van Erven等,2015),或者甚至可以达到与强凸的强劲速率相同的速率,即使函数也不强劲,karimi et al al an al al an al al and act al and act al and act an al al an al an al an al al an al al an al al al al al al al al al al al al al al al al al al al al al al al al al al a al al a al al act 201 v exe et a al and lie et as act 2010 8。 Al。,2017)。以此为动机,我们的问题是,对于具有特殊类别的人口风险功能的DP-SCO问题,是否有可能比一般凸的最佳人口和(或(或)强烈凸出案例的最佳人口风险率更快?在本文中,我们通过研究一些类别的人口风险功能来提供有效的答案。尤其是,我们将主要关注种群风险功能满足Tysbakov噪声条件(TNC)1的情况,其中包括强烈凸功能,SVM,SVM,ℓ1频繁的随机性优化和线性回归为特殊情况
本文提出了一种三相不平衡微电网三级控制优化模型。该模型考虑了 24 小时运行,包括可再生能源、储能设备和电网规范限制。使用最近开发的基于 Wirtinger 微积分的近似法简化了功率流方程。对所提出的模型进行了理论和实践评估。从理论角度来看,该模型适用于三级控制,因为它是凸的;因此,保证了全局最优、解的唯一性和内点法的收敛性。从实践角度来看,该模型足够简单,可以在小型单板计算机中实现,计算时间短。后者通过在具有 CIGRE 低压基准的 Raspberry-Pi 板上实现该模型来评估;该模型还在 IEEE 123 节点配电网络测试系统中进行了评估。