摘要:本文提出了一种基于第二代电压传送器 (VCII) 的半波整流器电路架构方案。该方案可产生电压信号形式的反相和非反相输出。所提出的电路是文献中介绍的第一种使用 VCII 的半波整流器架构。它由一个 VCII、两个二极管和一个接地电阻组成。输入信号为电流形式,整流输出电压信号在同一 VCII 的低阻抗 Z 端口提供。因此,产生的输出信号可直接使用,无需添加额外的电压缓冲器。此外,电路增益由接地电阻值设置,可以进行调整。所提出的电路采用简单的晶体管级结构,仅使用 21 个晶体管。本文介绍并解释了整流器的架构以及可能的 VCII 拓扑。还给出了初步的模拟结果,突出了其功能。它的简单性和多功能性使其适用于传感器接口和传感器网络的处理电路,其中模拟处理部分的低功耗至关重要。
实验 注意:至少要进行五个实验 1. 绘制 Si PN 结二极管的正向/反向特性。 2. 绘制齐纳二极管的正向/反向特性 3. 研究并绘制齐纳二极管作为稳压器的特性 4. 研究半波整流器并绘制输入/输出信号的性质。计算 Idc、Irms 的值和纹波系数。 5. 研究全波整流器并绘制输入/输出信号的性质。计算 Idc、Irms 的值和纹波系数。 6. 研究桥式整流器并绘制输入/输出信号的性质。计算 Idc、Irms 的值和纹波系数。 7. 画出 CE 配置中 npn 晶体管的输入输出特性曲线 8. 画出 CB 配置中 npn 晶体管的输入输出特性曲线 9. 画出 JFET 的漏极和传输曲线 10. 研究 OPAMP (741) 并计算 (i) 反相模式和 (ii) 非反相模式下的增益
单元 1:放大器 16 小时 多级放大器:多级放大器的需求和使用、总增益、级联与共源共栅。RC 耦合放大器。达林顿放大器 - 电路、电流增益、Zi、Zo、优点。功率放大器:电压与功率放大器、功率放大器的需求、分类 A 类、C 类(仅提及)B 类:推挽放大器、工作、效率(推导)、交叉失真、谐波失真、互补对称(无变压器)。比较。调谐放大器:需要单调谐和双调谐、工作、频率响应曲线、优点和缺点、耦合说明。JFET - 类型 - p 沟道和 n 沟道、工作和 IV 特性 - n 沟道 JFET、参数及其关系、BJT 和 JFET 的比较。共源放大器、MOSFET:E&D、MOSFET – n 沟道和 p 沟道、构造、工作、符号、偏置、漏极和传输特性、CMOS 逻辑、CMOS 反相器 - 电路、工作和特性。单元 2:反馈放大器和振荡器 10 小时反馈:反馈类型正反馈和负反馈、框图、反馈对 Av、BW、Zi 和 Zo 的影响(仅适用于电压串联反馈放大器电路)。振荡器的需求;正反馈、储能电路 – 振荡、谐振频率。巴克豪森振荡准则、LC 调谐振荡器 - Colpitts 和 Hartley 振荡器、振荡频率(无推导)、最小增益、优点和缺点、RC 振荡器 - 相移和 Wein 桥振荡器(无推导)、频率和最小增益、晶体振荡器、压电效应、等效电路、串联和并联谐振电路、Q 因子。非正弦振荡器:非稳态多谐振荡器,工作波形,频率公式(仅提及),单稳态多谐振荡器,双稳态多谐振荡器(触发器概念)。 单元 3:集成电路 04 小时 IC555 框图和引脚图。 IC555 应用 - 非稳态(推导)和单稳态多谐振荡器,压控振荡器。 施密特触发器。 IC 稳压器:LM317,IC78XX,79XX 系列(框图) 单元 4:运算放大器(Op-Amp) - 理论与应用 11 小时 Op-Amp 框图,引脚图 IC741,规格,理想和实际运算放大器参数的特性 - 输入偏置电流,输入失调电压,输出失调电压,CMRR,斜率 SVRR,失调零,开环运算放大器限制,闭环运算放大器。负串联反馈放大器的框图,反相和非反相反馈电路,增益,R if ,R of 。虚拟接地,单位增益带宽积。应用:加法器 - 反相和非反相,减法器,比例变换器,缓冲器,积分器,微分器(理想和实用)。比较器,过零检测器,有源滤波器 - 巴特沃斯一阶低通、高通、带通、带阻、全通滤波器。二阶滤波器(仅提及)。自学:04 小时 IC 制造技术。推荐教科书 1、运算放大器和线性电路,Ramakanth Gayakwad PHI,第 5 版,2015 年。2. 应用电子学教科书,RS Sedha
1 carpine G,来自Ben M,Passory D,Carenal R,Barata F,Overi D等。令人难以置信的肝肝潜水>
( 1 ) Fabriz S, Mendzheritskaya J, Stehle S: 高等教育中同步和异步在线教学设置对学生在新冠疫情期间学习体验的影响。Front Psychol. 12: 733554, 2021 ( 2 ) Sattler A, Dunn J, Albarran M 等:初级卫生保健系统中异步与同步筛查抑郁和自杀倾向:质量改进研究。JMIR Ment Health. 11: e50192, 2024
Bioaching提供了一种低输入方法,可以从硫化物矿物质中提取有价值的金属,该方法通过利用微生物的硫和铁代谢来分解矿石。生物含量的微生物通过氧化铁和/或硫产生能量,因此产生氧化剂,氧化剂攻击硫化物矿物质表面,从而释放靶金。作为在此过程中产生的硫酸,生物询问的生物通常是嗜酸剂,实际上该技术基于在酸性矿物排水地点发生的自然过程。虽然生物素质的总体概念显得直截了当,但需要一系列酶来介导复杂的硫氧化过程。本综述探讨了生物无用的基础机制,总结了当前有关驱动酸性硫和嗜酸菌铁氧化的酶的知识。最新模型是由硫化物矿物质生物渗入的两种矿物定义的途径提供的:硫代硫酸盐和多硫化物途径。
抽象背景肿瘤突变负担(TMB)是最近提出的实体瘤免疫疗法的预测生物标志物,包括非小细胞肺癌(NSCLC)。可用的TMB确定测定方法在水平覆盖率,基因含量和算法上有所不同,从而导致结果差异,从而影响患者的选择。迫切需要对NSCLC患者队列中TMB评估的协调研究。方法我们评估了使用两个销售的下一代测序面板获得的TMB评估:Trusight Oncology 500(TSO500)和96 NSCLC样品中的参考分析(Foundation One,FO)与参考分析(FOSTION ONE,FO)相比。此外,我们研究了三种方法与肿瘤中PD-L1表达的一致性水平,检查了不同免疫浸润与TMB的水平,并进行了实验室间可重复性研究。最后,确定了调整后的截止值。结果两个面板都与FO相一致,一致性相关系数(CCC)为0.933(95%CI 0.908至0.959),用于OTML的0.933(95%CI 0.908至0.959)和0.881(95%CI 0.840至0.922)。相应的CCC为0.951(TSO500-FO)和0.919(OTML-FO),在具有PD-L1的细胞<1%(PD-L1 <1%; N = 55)和0.861(TSO500-FO)和0.722(OTML-FO)的肿瘤中,pD-L1(pd-L1 <1%; n = 55)和0.722(otml-fo)(otml-fo)(otml-fo)(otml-fo)(otml-fo)(otml-fo),带有PD-L1%(n = 41%)(n = 41%)。实验室间的可重复性分析显示,TSO500的可重复性更高。在免疫浸润与TMB方面没有发现显着差异。结论两个面板在TMB评估中均表现出强大的分析性能,并且更强调整后的截止值对应于10个MUTS/MB的FO需要降低到7.847 MUTS/MB(TSO500)和8.380 MUTS/MB(OTML),以确保灵敏度> 88%。随着这些临界值的阳性预测值为78.57%(95%CI 67.82至89.32),负预测值为87.50%(95%CI 77.25至97.75)的TSO500,而OTML则为OTML,而OTML为73.33%(95%CI 62.142.14至84.52)和84.52)至84.52)至84.52)至84.52)至84.52)至84.52)至84.52)至84.52)(84.52)至84.52)分别为74.81至97.41)。
1 巴西圣保罗葡萄牙慈善医院肿瘤科; 2 巴西圣保罗 Israelita Albert Einstein 医院泌尿外科; 3 巴西圣保罗保利斯塔肿瘤中心; 4 拉丁美洲合作肿瘤学组,巴西雷斯托克阿雷格里港; 5 巴西圣保罗叙利亚黎巴嫩妇女慈善协会医院; 6 巴西利亚大学医院肿瘤科,巴西利亚,DF,巴西; 7 巴西利亚圣卢西亚医院肿瘤和血液学中心; 8 巴西利亚天主教大学泌尿外科,巴西联邦塔瓜廷加; 9 巴西福塔莱萨 Haroldo Juacaba 医院泌尿科; 10 巴西巴拿马萨尔瓦多圣拉斐尔医院泌尿科; 11 巴西米纳斯吉拉斯州米纳斯吉拉斯联邦大学贝洛奥里藏特临床医院泌尿科和外科部; 12 圣保罗城市大学,巴西圣保罗; 13 巴西圣保罗大学里贝朗普雷图医学院; 14 AMO 诊所,萨尔瓦多,巴伊亚州,巴西