原发性膜性肾病 ( primary membranous nephro- pathy , PMN ) 是全球成人肾病综合征常见的病因 , 也是中国原发性肾小球疾病中发病率第二 、 增长 最快的疾病 [ 1 ] 。大多数 PMN 患者有典型的临床表 现 , 包括大量蛋白尿 、 低蛋白血症 、 水肿和高脂血 症等。近 30% 的 PMN 患者能够获得自发缓解 , 但 中危和高危患者 , 即大量蛋白尿 、 肾功能不稳定的 患者 , 缓解的可能性较低 [ 2 ] 。 既往研究表明 , 线粒体功能障碍在急性肾损伤 ( acute kidney injury , AKI ) 和慢性肾脏病 ( chronic kidney diseases , CKD ) 的发病机制和肾脏修复中发 挥关键作用 [ 3 - 4 ] 。线粒体功能与线粒体 DNA ( mito- chondrial DNA , mtDNA ) 的完整性密切相关 , 当线 粒体受损时 , mtDNA 会从线粒体基质释放到细胞 质或细胞外 , 进而激活氧化应激反应 , 并作为炎症 介质激活自然免疫炎症反应 [ 5 ] 。目前多项研究表 明 , 尿 mtDNA 是各种肾脏疾病中线粒体损伤的替 代标志物 [ 6 ] 。我们之前的研究表明 , mtDNA 在尿液 和肾脏组织中容易被检测到 , 其拷贝数与糖尿病肾 脏疾病的肾功能下降和肾脏病理结构改变有关 [ 7 ] 。 另一项研究指出 , 尿液中 mtDNA 与肾功能下降速 度有关 , 并能预测非糖尿病肾脏疾病患者血肌酐翻 倍或需要进行透析治疗的风险 [ 8 ] 。然而 , 尿 mtD- NA 在 PMN 患者中的改变及其对预后的预测作用 仍不明确。本研究旨在探讨尿 mtDNA 与 PMN 患
非小细胞肺癌(NSCLC)作为与癌症相关死亡的主要原因,在全球范围内提出了严重的健康问题。在晚期或遇到的阶段诊断出约30%的NSCLC患者,总生存率(OS)率为7%–18%2。与局部NSCLC不同,可以通过治疗意图进行治疗,NSCLC转移性NSCLC患者通常接受全身治疗,以延迟进展和延长生存率。寡聚症的概念是1995年首次描述的,是指局部疾病与广泛传播转移3之间的中间阶段。寡聚量传统上被定义为有限数量的射线照相转移。国际肺癌研究协会(IASLC)共识声明提出,在多达3个器官4中,寡聚型NSCLC的定义最大为5个远的转移。对于有限的转移性爆发患者,局部治疗(例如手术或放疗)可能会提供治愈的可能性。可以在全身治疗之前先进行局部治疗,也可以在诱导的全身疗法作为局部巩固疗法(LCT)后提供少量转移NSCLC患者的残留性。对全身治疗的最大反应时残留疾病表明
这是推导贝尔不等式所需的唯一假设。λ 表示系统状态,可用任何可能的未来物理理论描述(但假设 x 和 y 与 λ 无关)。从这个意义上说,贝尔不等式远远超出了量子理论:违反贝尔不等式证明没有未来理论能够满足局域性条件 (1)。约翰·克劳泽、阿布纳·希莫尼、迈克尔·霍恩和理查德·霍尔特是 20 世纪 60 年代少数理解这一点的人,他们都想检验贝尔不等式,克劳泽想证明量子理论是错误的,而哈佛大学的年轻学生霍尔特想证明贝尔局域性假设 (1) 是错误的。得益于伯克利现有的设备,克劳泽处于有利地位。事实上,卡尔·科克尔也在 1967 年做过类似的实验,不过是出于其他目的。不幸的是,Kocher,甚至更早的吴建雄,只测量了偏振器平行或正交时的关系,而真正违反贝尔不等式需要中间取向。请注意,假设偏振是一个二维量子系统,即今天所说的量子比特,则可以从假设无信号传输的平行和正交关系中推导出 45° 关系 [1]:E 45 = (E +E )/√ – 2。这在当时并不为人所知。但无论如何,Kocher 和吴测得的可见度低于 50%,而真正违反贝尔不等式需要可见度大于 71%。因此,竞赛开始了。Clauser 先到了一步,证实了量子预测,这出乎他的意料。但随后 Holt 也得到了自己的结果,证实了不等式,这出乎他的意料。不知何故,比分竟然是一比一。当时,这些迷人而有趣的结果几乎没有引起任何人的兴趣,除了一些嬉皮士,他们后来可以声称拯救了物理学[2]。克劳塞与他们进行了长时间的讨论,尽管我最后一次见到他时,他已经变成了一个大声的气候怀疑论者。20世纪70年代,我的朋友阿兰·阿斯派克特在非洲做法国公务员,像我们所有人一样阅读物理学。当他偶然发现贝尔不等式时,他一见钟情:“我想研究它”。回到巴黎后,他前往日内瓦会见约翰·贝尔,并告诉他自己的计划。贝尔回答说:“你有永久职位吗?”事实上,在那个时代,研究贝尔不等式——甚至只是表现出对它的兴趣——都是一种科学自杀。教条认为,玻尔已经解决了所有问题。回想起来,很难理解玻尔被贬低得有多深
2024年6月19日 — (4)防卫政策局局长、采购、技术和后勤局局长或陆上自卫队参谋长...... (3)设计文件中指定的标有JIS或JAS标记的材料或标准、准则等......
因此,跨个体、跨场景的脑电分析方法逐渐成为研究热点。越来越多的研究人员将广泛应用脑 电信号分析的特征于跨个体、跨场景的脑电信号分析研究中。 Touryan 等人采用经典的独立成分分 析的特征分析方法描述特征空间,计算功率谱密度( Power Spectral Density , PSD ),并采用顺序 前向浮动选择方法识别频谱特征中的独立成分集,结果表明该方法可以识别出跨场景脑电信号中的 共同成分 [88] 。 Kakkos 等人采用了特征融合的方法,将 PSD 与功能连接特征相结合,提高了跨场景 分类的性能,并证明了脑特征融合在跨场景中的应用更为有效 [89] 。 Xing 等人将模糊熵特征用于跨 场景脑电信号分析,发现模糊熵特征相对于其他特征更能适合跨场景 [90] 。卷积神经网络 ( Convolutional Neural Networks , CNN )和递归神经网络( Recurrent Neural Networks , RNN )等基 于深度学习的新型跨任务模型在跨场景脑电分析中展现了巨大潜力。这些模型能够自动提取特征和 学习复杂的脑电特征,从而有效地缩小不同任务和场景之间的差距,提高模型的泛化能力 [91][92][93] 。 近年来,一些跨学科的方法被创新性地应用于跨场景研究, Zhao 等人提出了一种跨学科的对齐多 源域自适应方法,用于跨个体的 EEG 疲劳状态评估,显著提高了模型的泛化能力 [94] , Zhou 等人在 此基础上进行改进,提出了一种跨任务域自适应方法,有效提升了跨场景认知诊断的性能 [95] 。
接口技术[j]。信号处理期刊,2023年,39 (8):1386-1398。doi:10。16798/j。ISSN。 1003-0530。 2023。ISSN。1003-0530。2023。
本证据报告基于 RTI-北卡罗来纳大学循证实践中心通过 RTI International 与华盛顿州卫生保健局 (HCA) 签订的合同进行的研究。本文件中的发现和结论为作者所作,作者对其内容负责。这些发现和结论不代表华盛顿 HCA 的观点,本报告中的任何声明均不应被视为华盛顿 HCA 的官方立场。本报告中的信息旨在帮助华盛顿州独立卫生技术临床委员会做出明智的承保决定。本报告并非旨在替代临床判断的应用。任何做出有关提供临床护理决定的人都应以与任何医学参考相同的方式考虑本报告,并结合所有其他相关信息(即,在可用资源和个别患者所呈现的情况的背景下)。本文件属于公共领域,除文件中明确注明的受版权保护的材料外,可以未经许可使用和转载。未经版权持有人明确许可,禁止进一步复制这些受版权保护的材料。