完整作者列表: Pradhan, Dhiren;田纳西大学诺克斯维尔工程学院,材料科学与工程;橡树岭国家实验室纳米相材料科学中心, Kumari, Shalini;宾夕法尼亚州立大学帕克分校,材料科学与工程系 Puli, Venkata;圣卡洛斯联邦大学,化学 Pradhan, Dillip;NIT Rourkela,物理与天文系 Kumar, Ashok;国家物理实验室 (CSIR),顶级标准与工业计量 (ALSIM) Kalinin, Sergei;橡树岭国家实验室,凝聚态科学 K Vasudevan, Rama;橡树岭国家实验室,纳米相材料科学中心 Katiyar, Ram;波多黎各大学,Rio-piedras,物理学 Rack, Philip;田纳西大学;橡树岭国家实验室纳米相材料科学中心
诸如运动想象脑机接口 (BCI) 之类的输入设备通常不可靠。理论上,人机回路中可以使用通道编码来通过嘈杂的输入设备稳健地封装意图,但标准前馈纠错码实际上无法应用。我们为噪声水平非常高的二进制输入设备提供了一个实用且通用的概率用户界面。我们的方法允许实现任何级别的稳健性,而不管噪声水平如何,只要有可靠的反馈(例如视觉显示)即可。特别是,我们展示了基于反馈通道代码的高效缩放界面,用于噪声水平为基于运动想象的 BCI 等模态特征的二分类问题,准确率 < 75%。我们概述了基于分离通道、线路和源编码的人机回路设计中的一般原则。我们开发了一种新颖的选择机制,可以使用嘈杂的双态按钮实现任意可靠的选择。我们展示了对变化的通道统计数据的自动在线适应,以及无需精确校准错误率的操作。我们使用一系列可视化来构建用户界面,这些界面以对用户透明的方式隐式编码这些通道。我们通过一组蒙特卡罗模拟和人机交互实验的实证结果验证了我们的方法,结果表明,该方法在一系列通道条件下可有效运行,达到理论最佳值的 50-70%。
摘要:在这项工作中,我们引入了一种新颖的连贯的完美吸收器,通过强调通过使用不对称石墨烯元素的宽带宽度,厚度减小,可调性和直接设计来突出其新颖性。此设计均包含在硅基板两侧排列的正方形和圆形石墨烯贴片。具有优化的结构设计,该吸收器始终在1.65至4.49 THz的频率范围内捕获超过90%的传入波,而石墨烯费米水平为0.8 eV,整个设备的测量仅为1.5 um。这使我们的吸收器比以前的设计更有效和紧凑。通过将元表面的几何设计与石墨烯费米水平相结合,可以显着增强吸收器的有效性。可以预料,这种超薄的宽带连贯的完美吸收装置将在出现的芯片上通信技术中起着至关重要的作用,包括光调节器,光电探测器等。
摘要:通过波前传感对纯相对象的可视化具有重要的应用,从表面效果到生物医学显微镜,通常需要涉及光空间过滤,干涉测量法或结构化照明的笨重且复杂的设置。在这里,我们引入了一种新型的图像传感器,该传感器对光传播的局部方向具有独特的敏感性,基于涂有特殊设计的等离子跨表面的标准光电探测器,从而产生了对表面正常围绕入射角的不对称响应性的不对称依赖性。使用模拟光电传动探测器平台证明了元表面设计,制造和角度敏感的操作。测量结果,结合计算成像计算,然后用来表明基于这些跨表面像素的标准摄像头或微观范围可以直接访问相位对象,而无需任何其他光学元素,而最先进的最小可检测到的最小可检测相的相比是10 mrad。此外,在同一像素阵列上具有相等和相反角度响应的传感器的组合可用于在单个镜头中执行定量相成像,并具有定制的重建算法,该算法也在这项工作中也开发。凭借其系统的微型化和测量简化,这些设备启用的相成像方法对于涉及涉及空间约束和便携式设置的应用尤其重要(例如,现场的想象和内镜和内镜)和涉及自由移动对象的测量值。
1. C. Quintana、Q. Wang 等人,“用于长距离反射自由空间光学器件的高速电吸收调制器”,IEEE 光子技术快报,第 29 卷,第 9 期,第 707-710 页,2017 年 2. C Quintana、Q Wang 等人,“与 UAV 连接的高速反射自由空间光学器件”,IEEE 光波技术杂志,ISSN 0733-8724,E-ISSN 1558- 2213,2021 年 DOI:10.1109/JLT.2021.3091991
可控的方式。[6] 然而,自上而下的技术不可扩展,且大多数技术耗时耗力,从而阻碍了它们的潜在应用。特别是手性微结构可以通过调制飞秒激光焦点的单次曝光快速制造。[7] 其几何形状严格由可实现的结构化焦点决定,并且得到的表面质量相当差。相反,自下而上的方法提供了一种经济高效且可扩展的替代方法,通过由不同材料(如共聚物、[8] 肽、[9] 纳米粒子 [10] 和 DNA 四面体 [11] 制成的亚基的顺序自组装来创建分层纳米结构。不幸的是,由于自发自组装过程的固有特点,对几何形状、空间排列、规律性和螺旋性的精确控制非常困难。自上而下和自下而上相结合的混合制造技术的最新进展有望克服上述一些限制。[12] 特别是,通过介导弹性毛细管相互作用的毛细管力驱动自组装引起了人们的极大兴趣,因为它具有简单性和可扩展性的独特优势,[13] 并且在一定程度上已用于混合制造策略。基于光刻的技术已经实现中尺度刷毛的制造,并且通过利用弹性毛细管聚结已经得到高度有序的螺旋簇。[14] 然而,由于圆形原纤维具有旋转对称性,因此单个簇所实现的手性是随机的。虽然可以通过将横截面渲染为矩形来获得特定的手性重排,但手性的可调性仍然有限。利用电子束光刻技术实现10纳米级的纳米柱,然后通过毛细管力诱导的纳米内聚力进行自组装。[15] 利用多光束干涉光刻技术,结合溶液蒸发过程中的毛细管力,制备并组装大面积图案化微柱。[16] 我们之前的研究表明,可以利用毛细管力来驱动直柱生成具有高度可控性的分级微结构。[17] 然而,由于毛细管力在微尺度上很难利用,它们都无法实现可控的手性结构。因此,开发一种简便、可控、高效的功能手性结构制备方法是十分有必要的。
我们考虑了在系统中存在非均匀噪声时,在最简单的量子密钥分发协议(即 BB84 和六状态协议)中实现的渐近密钥速率。我们首先观察到较高的量子比特错误率并不一定意味着较低的密钥速率。其次,我们考虑具有优势蒸馏的协议,并表明使用具有较高量子比特错误率的基础来生成密钥会很有优势。然后,我们讨论了优势蒸馏和纠缠蒸馏协议之间的关系。我们表明,将优势蒸馏应用于由具有较高量子比特错误率的基础中的测量结果形成的比特串与 Deutsch-Ekert-Jozsa-Macchiavello-Popescu-Sanpera [ Phys. Rev. Lett. 77, 2818 (1996) ] 的二对一纠缠蒸馏协议密切相关。最后,我们讨论了这些结果对量子密钥分发实现的意义。
提出了基于耦合的多核纤维的光学量表并实验证明。通过使用直接激光写作来选择性打破索引索引对称性,引入了核之间的不对称模式耦合。这允许使用仅使用一个传感器的结构中检测和不同类型的变形的能力来制造光仪。将制造的光学仪与校准的商业仪表和纤维式光栅进行了比较,例如应变,振动和曲率仪表。测试表明,这种新型光学量表的性能优于市售传感器,并且具有最高的敏感性。所提出的技术可能是制造具有比以前获得更多功能和功能更好的新型感应设备的关键。
摘要 双场量子密钥分发(TF-QKD)是一种颠覆性创新,它能够克服无需可信中继的 QKD 速率-距离限制。自第一个 TF-QKD 协议提出以来,人们在理论和实验上不断取得突破,以增强其能力。然而,仍有一些实际问题有待解决。在本文中,我们研究了具有不稳定光源和有限数据量的非对称 TF-QKD 协议的性能。使用 Azuma 不等式估计参数的统计波动。通过数值模拟,我们比较了具有不同数据量和不同强度波动幅度的非对称 TF-QKD 协议的密钥速率。我们的结果表明,统计和强度波动都对非对称 TF-QKD 的性能有显著的影响。
在材料科学中,开发具有聚集诱导发射的热活化延迟荧光 (TADF) 发射器对于构建高效电致发光器件至关重要。在此,基于高度扭曲的强吸电子受体 (A) 硫芴 (SF) 修饰的酮 (CO) 和芳胺供体 (D),通过简单的合成程序高产率设计和制备了两种具有迷人聚集诱导发射的不对称 TADF 发射器 SFCOCz 和 SFCODPAC。所得分子具有高达 73% 的光致发光量子产率和 0.03 eV 的小单重态-三重态分裂;令人惊讶的是,由这些发射器促进的高效非掺杂和掺杂 TADF 有机发光二极管 (OLED) 显示出 5,598 和 11,595 cd m − 2 的高亮度、16.8 和 35.6 cd/A 的电流效率 (CE)、9.1 和 29.8 lm/W 的功率效率 (PE) 以及 7.5% 和 15.9% 的外部量子效率 (EQE)。这项工作为探索高效的 TADF 发射器提供了一个具体的例子,这对同时促进具有高亮度和出色效率的 TADF OLED 的发展非常有利和令人鼓舞。