Chunrui Han 2,3* , Kenji Watanabe 4 , Takashi Taniguchi 4 , Kaihui Liu 1 , Jinhai Mao 5 , Wu Shi 6,7 , Bo Peng 8 ,
马哈拉施特拉邦电力监管委员会 (MERC) 对该邦的配电公司实施了可再生能源采购限制(太阳能和非太阳能)。这要求所有配电公司购买一定数量的非传统能源,与许可区域的总电力消耗量相比。因此,需要规划实现到 2025 年建成一座容量为 25,000 兆瓦的非传统发电厂的目标。因此,有必要重新考虑现有的非传统能源政策,制定一项鼓励政府和私营部门参与的新政策。它的主要目的是为私人/私人投资输电附加、非输电和存储项目创造有利环境。
钌催化剂促进氨分解:传统固定床、膜辅助和催化膜反应器的比较研究 Domenico Maccarrone、Gianfranco Giorgianni、Serena Agnolin、Siglinda Perathoner、Gabriele Centi、Fausto Gallucci、Salvatore Abate
成像 • 3D 成像 • 遥感、医学、生物学、地球物理、防御等领域的应用 • 生物和分子成像 • 编码孔径成像 • 计算成像 • 计算效率高的成像算法 • 与非常规成像系统实施相关的实验结果或硬件 • 使用人工智能的成像方法,例如机器学习和深度学习。 • 主动或被动照明成像 • 分集测量成像,包括相位分集、偏振分集、孔径分集、波长分集等 • 像平面测量、瞳孔平面测量或两者成像 • 合成孔径激光雷达和逆合成孔径激光雷达系统成像 • 湍流、折射或高散射介质成像或通过湍流、折射或高散射介质成像 • 使用超快脉冲成像 • 使用非常规光学设计成像 • 图像恢复和合成的信息论极限
摘要:锂的需求预计在十年末之前将四倍。没有新的生产来源,供需曲线有望倒转。传统的地质储量将无法满足预期的差距,因此需要利用锂的非常规来源,为激烈的竞争奠定了基础,这可能是能源过渡所需的最挑战的矿产资源。直接锂提取是指为从非常规来源获取锂的技术的伞。电化学提取与可再生能源相结合时的选择性和低工作成本提供了巨大的希望。本综述旨在描述材料和过程设计考虑因素,用于从水源中电化学提取锂,并在我们的研究小组中专门强调ζ-V 2 o 5作为插入宿主。我们指出了基于长度尺度材料设计的电化学锂提取的能力和选择性的特定策略。策略范围从插入宿主的现场选择性修改到多孔电极体系结构中离子扩散途径的受控曲折。从非常规来源提取的电锂锂提取,即与清洗废水,氢产生和辅助关键金属的恢复相结合时,可以成为可持续经济的关键。
新冠疫情带来的全球冲击使政策制定者面临着标准政策工具在刺激经济方面的局限性。标准的货币和财政政策不足以迅速为现金流突然下降的企业提供流动性。鉴于冲击的规模及其与信贷摩擦和企业(主要是中小型企业)的复杂相互作用,此外,它们还面临信贷配给,这可能会将流动性冲击转变为偿付能力冲击。为了缓解企业的流动性短缺问题,政府迅速采取了非常规信贷政策,例如为企业贷款提供公共担保或中央银行流动性工具为由政府担保的贷款提供资金。我们认为,这些信贷政策被称为非常规政策,并被归类为与 C´urdia 和 Woodford(2011 年);Gertler 和 Karadi(2011a 年)研究的传统信贷政策不同,原因有二:1) 贷款由政府担保的信贷政策发放; 2)信贷政策产生的贷款所需回报率是货币政策利率本身,而不是市场决定的银行贷款所需回报率,后者不含企业违约风险溢价,但包含信贷供应摩擦造成的溢价。第二个原因为货币政策考虑中央银行在信贷获取中的中介作用打开了大门。
近年来,对计算资源的需求巨大,这导致人们投入大量精力从理论上简化复杂问题,并开发各种技术平台来解决特定类别的难题。激子极化子似乎是一种非常有前途的物理系统,是这种技术进步的完美基础。主要研究工作集中在描述高复杂性计算问题与物理系统状态之间的对应关系。结果表明,使用激子极化子,可以实现具有非平凡相配置的 𝑘 -局部哈密顿量,其中 𝑘> 2。除此之外,新贡献在于引入了复杂的耦合切换方法,提供了一种显著提高使用激子极化子平台解决优化问题的成功概率的方法,并且适用于一般的增益耗散模拟器。从算法的角度来看,可以将该方法用作传统计算机架构上的一种有用的启发式方法。此外,还考虑了不同计算任务之间的现有对应关系,并提出了将任意计算任务编码/解码到光学/光子硬件中的方法。考虑了最通用和最复杂的机器学习方法,并考虑了潜在的架构映射。结果表明,使用非线性自旋簇,可以近似预定的架构,累积误差很小,突破了可用计算的极限。这种新的替代方法允许人们在许多凝聚态系统上直接实现神经网络算法,具有各种优点,例如减少了实现更传统的神经网络实现方法所需的额外变量的开销。由于激子极化子具有有前途和诱人的特性,并且具有前瞻性技术,因此除了现有的应用外,还开展了潜在应用的研究,重点是周期性结构及其分析描述。通过强调分析形式,引入的方法可以确定凝聚态的速度分布如何随参数(例如捕获和耗散电位)而变化,从而避免大量计算。建立了行为和相图,为超快信息处理和模拟模拟器的可控激光或极化子流开辟了道路。总而言之,我们可以完全有信心地说,激子-极化子是一个有前途的平台,但尚未充分发挥其潜力。
理由:a)成本为2x25 km(3.3 HM3)瓜达拉玛大道铁路隧道。b)基于铁矿石罚款。c)来自供应商。d)来自Alvarado-Cancieta 2012。a)可以急剧减少,岩石发掘可以为30美元/立方米。b)使用非金属级矿石(倾倒1%P含量的罚款,Coto Wagner,Spain)。如果使用垃圾场材料,则更少。
摘要:最近的 COVID-19 危机凸显了 RNA 病毒的重要性。该组中最突出的成员是 SARS-CoV-2(冠状病毒)、HIV(人类免疫缺陷病毒)、EBOV(埃博拉病毒)、DENV(登革热病毒)、HCV(丙型肝炎病毒)、ZIKV(寨卡病毒)、CHIKV(基孔肯雅病毒)和甲型流感病毒。除了产生逆转录酶的逆转录病毒外,大多数 RNA 病毒都编码 RNA 依赖性 RNA 聚合酶,这些聚合酶不包括分子校对工具,这是这些病毒在宿主细胞中繁殖时具有高突变能力的原因。加上它们能够以不同方式操纵宿主的免疫系统,它们的高突变频率对开发有效和持久的疫苗和/或治疗方法提出了挑战。因此,使用抗病毒靶向剂虽然是抗感染治疗策略的重要组成部分,但可能会导致选择耐药变体。宿主细胞复制和加工机制对于病毒的复制周期至关重要,并引起了人们对针对宿主机制的药物作为治疗病毒感染的治疗替代品的潜在用途的关注。在这篇综述中,我们讨论了具有抗病毒作用的小分子,它们针对许多 RNA 病毒感染周期不同阶段的细胞因子。我们强调重新利用 FDA 批准的具有广谱抗病毒活性的药物。最后,我们假设 ferruginol 类似物 (18-(邻苯二甲酰亚胺-2-基) ferruginol) 是一种潜在的宿主靶向抗病毒药物。
超导间隙对称性对于理解潜在的超导性机制至关重要。角度分辨光发射光谱(ARPES)在确定非常规超导体中的间隙对称性方面起着关键作用。然而,到目前为止,ARPE只能测量超导间隙的大小,而不能测量其相位的幅度。该相必须由其他相敏感技术检测到。在这里,我们提出了一种直接检测ARPES超导间隙标志的方法。使用众所周知的D波间隙对称性,在Cuprate超导体BI 2 SR 2 SR 2 CACU 2 O 8+δ中成功验证了此方法。当两个频段具有较强的带间相互作用时,超导状态下所得的电子结构对两个频段之间的相对间隙标志敏感。我们目前的工作提供了一种检测间隙标志的方法,可以应用于各种超导体,尤其是具有多个轨道的超导体,例如铁基超导体。