5. 公开招标地点和日期 (1)地点:日本陆上自卫队留萌卫戍部队休息室 (2)日期和时间:2024 年 7 月 30 日星期二上午 10 点 6. 参加资格 (1)不属于《预算、会计和审计法》第 70 条规定的人员。此外,未成年人、被监护人或接受协助的人,即使已经取得订立合同所必需的同意,也属于同一条款内有特殊事由的情况。 (2)不属于《预算会计审计法》第七十一条规定情形的。 (3)已完成2022年度、2023年度、2024年度防卫省竞标资格(各省厅统一资格)登记手续,并已获得合格人员认证,“货物销售”等级为“D”以上,具备参加北海道地区竞标的资格。 (4)该人不属于“暂停与设备等及服务采购相关的指定等”附件的对象。 (5)该人目前没有受到合同官员或其他类似人员的交易暂停。 7.保证金等事项 (1)投标保证金:免除(但是,如果未按照《投标和签订合同指南》的规定办理合同手续,则中标人将被视为未同意签订合同,并将收取中标金额的百分之五的罚款。) (2)合同保证金:免除(但是,如果承包商不履行合同,则至少要收取合同金额的百分之十的罚款。) (3)延误赔偿金:每延误一天,将收取合同金额的千分之一或以上。 8. 无效投标 (1) 不具备第 1 项规定的参加竞标所需资格的人员所作的投标。 (2) 投标金额、投标人名称和印章难以确定的投标。 (3) 违反其他有关投标条件的投标。 (4) 通过电报或传真进行的投标。 (5) 投标人在投标开始时间之前迟到的投标。 (6) 未履行有关排除黑社会组织的承诺的人员所作的投标和承诺,且包含虚假内容或出现违反承诺的情况。 9. 中标确定方法
[摘要]长的非编码RNA(LNCRNA)是由200多个核苷酸构成的RNA分子,表现出相对较低的序列保护。很长一段时间以来,它们被视为“转录噪声”,即在生物领域中的非功能性RNA分子。近年来,随着研究的进步,科学家们在lncrnas中揭示了许多小型开放式阅读框(SORF),其中一些可以编码微肽。这些微肽已被证实参与了各种细胞过程和基因表达调节网络,扮演着至关重要的作用。这一发现为进一步探索生活活动以及临床诊断和疾病治疗的新研究方向开辟了新的研究方向。本综述总结了LNCRNA编码的菌根在病理和生理过程中的作用,微肽的亚细胞定位和功能机制以及微肽研究方法的进展,旨在为新型积分基于磨性的诊断诊断和治疗方法提供洞察力和参考。[关键词]长的非编码RNA;小开放阅读框;微肽;肿瘤
基于硫代构化相位变化材料(PCM)的光子记忆细胞的实现引起了人们的关注,因为它们的快速,可逆和非易失性编程功能。[1]在硅光子平台上整合PCM存储器单元,例如GE 2 SB 2 TE 5(GST)和Aginsbte(AIST),[2] [2]可以使全观内存处理,并在其电子交通方面具有显着的优势,并在带状,速度,速度,速度,速度,速度,速度,速度,速度和并行处理中。[3,4]在开发光学逻辑门,[5,6]可恢复可填充的Photonic电路,[7-9]电气控制的光子记忆细胞,[10,11]等离激源性波导开关,[12,13] Neuro-neuro启发的光子Synapes,[14]和Neural Net-Net-net-net-net-net-net-net-net-net-net-net-net-Net-net-net-net-Net-net-net-Net-net-net-net-Ner ner Net-net-net-nerter Worts中。[15,16]先前的研究系统地研究了光子记忆细胞对二硝基二硝酸盐仪(SI 3 N 4)和硅启用器(SOI)平台的性能,[17,18],在这些平台上,从基线(完全结晶的状态)观察到了单调增加的透射率,该传播是作为拟合程序的拟合功率。这个完善的单调光学编程使可变的可变性能够归因于Hebbian学习的基本生物神经突触的峰值依赖性可塑性(STDP)。[14]值得注意的是,最近在各种光电平台上开发了人工突触,例如[19],基于Chalcogenide玻璃波波[20]和H-BN/WSE 2异质结构。[21]在STDP中,神经元之间的连接强度,即突触重量或突触效率,根据神经元的输出和输入尖峰的相对时机进行调整。[22]突触可塑性的基本公式,即突触重量的变化可以表示为δw¼f(δt),其中δt p p p pre,t pre,t post和t pre分别是后和神经前的时间。δT<0带有δW<0和δT> 0引入长期抑郁(LTD),并带有δW> 0的长期增强(LTP)。
摘要:在航空航天环境中,芯片的高可靠性和低功耗至关重要。为了大幅降低功耗,芯片的锁存器需要进入掉电操作。在此操作中,采用非易失性(NV)锁存器可以保留电路状态。此外,在航空航天环境中,锁存器可能会被辐射粒子击中,在最坏的情况下会导致严重的软错误。本文提出了一种基于电阻式随机存取存储器(ReRAM)的NV锁存器,用于NV和鲁棒应用。所提出的NV锁存器具有低开销的抗辐射能力,并且可以在掉电操作后恢复值。仿真结果表明,所提出的NV锁存器可以完全提供针对单粒子翻转(SEU)的抗辐射能力,并可以在掉电操作后恢复值。与其他类似解决方案相比,所提出的NV锁存器可以将存储单元中的晶体管数量平均减少50%。
摘要:电化学随机访问记忆(ECRAM)是一种最近开发且高度有希望的模拟电阻记忆元件,用于内存计算。一个长期以来的ECRAM挑战是在几个小时内获得保留时间。这种短暂的保留使ECRAM无法被考虑在深神经网络中进行推理分类,这可能是进行内存计算的最大机会。在这项工作中,我们开发了一个ECRAM细胞,其保留率的保留率比以前的数量级长,并且我们预计在85°C下将超过10年。我们假设这种特殊保留的起源是相位分离,它可以形成多个有效的平衡抗性状态。这项工作强调了使用相位分离来产生ecram细胞的承诺和机会,并具有特殊且潜在的永久保留时间。
电场的纵向成分是e z = ∑ ae ikrቀxcos 2nπn + ysin 2nπnπe-k e -k z z z z n n = 1,带有
摘要 - 光子综合电路(图片)是片上光学技术的基础。MACH-ZEHNDER调制器(MZM)是图片的有吸引力的构件,这些图片主要依赖于材料中弱且挥发性的光学效应。相比之下,相变材料(PCM),例如GE 2 SB 2 SE 4 TE 1(GSST)是有前途的候选人,可以实现有效且非易失性的可重构光学设备。然而,PCM的相跃迁伴随着其折射率的假想部分的大大变化,这使得MZMS的设计具有挑战性。在本文中,引入了两种称为“损失平衡”和“均衡”的有趣设计方法,以提出基于GSST的高性能MZM。在这方面,提出了以石墨烯为基础的基于GSST的波导,该波导在两种引入方法中都扮演着可构型活性波导的作用。根据提出的分析,在1550 nm的波长下,活性长度为4.725 µm,插入小于2 dB的非易失性MZM是可实现的。最后,对提出的基于GSST的波导进行热模拟,以便估计要进行非晶化(擦除)和结晶过程所需的电压分别为12 V和4.3 V。
大规模数据存储的爆炸性增长和对超快数据处理的需求需要具有出色性能的创新记忆设备。2D材料及其带有原子尖锐界面的范德华异质结构对内存设备的创新有着巨大的希望。在这里,这项工作呈现出所有由2D材料制成的功能层,可实现超快编程/擦除速度(20 ns),高消光率(最高10 8)和多位存储能力。这些设备还表现出长期的数据保留超过10年,这是由高栅极偶联比(GCR)和功能层之间的原子尖锐接口促进的。此外,这项工作证明了通过协同电气和光学操作在单个设备单元上实现“或”逻辑门的实现。目前的结果为下一代超速,超级寿命,非挥发性存储器设备提供了坚实的基础,并具有扩展制造和灵活的电子应用程序的扩展。
2024年6月19日 — (4)防卫政策局局长、采购、技术和后勤局局长或陆上自卫队参谋长...... (3)设计文件中指定的标有JIS或JAS标记的材料或标准、准则等......