对于废物和残留物,对原产地点有特别的重点,因为这是供应链元素,在这种链接元素中,确定原材料是否符合废物或残留物的定义。此外,对于废物的起源或残基的起源点,采用了不同的风险方法,与农业或林业的(耕种)生物量相比,审计的频率和强度差异。废物和棕榈油厂产生的残留物,例如棕榈油磨坊废水(POME)或空棕榈果束(EFB),并且可以从这些物质中回收的各自的油被认为是“高级”原材料,该材料是根据红色II的附件IX的一部分。红色II设置了高级生物燃料的强制性目标,即由附件IX A.高级生物燃料的强制性目标增加到3.5%,直到2030年。同时,在红色II中指定的是“高ILUC风险生物燃料”,应逐步淘汰,因此不能用于红色II目标。该指南文件和随附的措施是由ISCC及其利益相关者制定的,以减轻潜在的(欺诈)风险,这是由于对棕榈油厂中对“先进”废物原材料的需求不断增长所致。
植物会随着季节变化而持续地暴露在各种环境和生物多样性压力之下,这些压力会抑制和影响植物从幼苗到收获阶段的生命过程。光照强度、温度、矿物质和水分供应等方面都存在一些异常。这些变化不断挑战植物的生长和繁殖,并产生多种环境信号。为了接收这些信号,植物本身会形成一个信号网络,其中包含多种受体,如植物激素、G 蛋白偶联受体、激酶和激素受体。信号转导会在植物中产生细胞反应,从而启动生理和发育反应。本文对植物在暴露于几种非生物胁迫时信号转导的几种机制和感知进行了深入细致的分析,并介绍了植物信号传导的一般途径。植物非生物胁迫通常在造成盐度、高温、低温、干旱等损失方面起着关键作用。为了通过主要依赖于遗传变异的常规育种来理解和克服这些问题,正在对拟南芥、水稻和短柄草等模型植物进行多项研究;在小麦中,这些基因组来源的可获得性正处于加工阶段。另一方面,基因组编辑的进步为科学家将所需特性融入特定植物物种打开了大门。第二代基因组编辑技术(如 CRISPR/cas9)的新兴发展为植物生物学家铺平了道路,使他们能够更高效、更快速地开发特性,这与传统育种方法不同。本综述概述了非生物胁迫期间信号传导的重要性以及转基因技术通过摄取植物中所需的特性来克服植物的非生物胁迫。
植物相关的微生物包括细菌,古细菌,真菌和病毒的分类学多样化群落,它们与宿主植物建立了不可或缺的生态关系,并构成了植物 - 微生物组。植物微生物组不仅在植物的正常生长和发育中做出贡献,而且在非生物胁迫条件下维持植物稳态中起着至关重要的作用。由于其巨大的代谢潜力,植物 - 微生物组为宿主植物提供了通过各种机制来减轻非生物应激的能力,例如产生抗氧化剂,植物生长激素,生物活性化合物,有害化学物质和毒素,毒素,反应性氧气和其他免费阳性质量和其他X。对植物 - 微生物组的结构和功能的更深入了解以及植物 - 微生物组介导的降低非生物压力的复杂机制将使其用于减轻作物植物的非生物压力的利用和抗胁迫作物的发展。本评论旨在探索植物植物中植物菌,热,盐度和重金属压力的潜力,并找到可持续的解决方案以提高农业生产力。总结了对植物生物体在赋予植物的非生物胁迫耐受性中作用的机理见解,这将有助于新型生物调节剂的发展。涉及候选基因鉴定和靶向基因修饰的高通量现代方法,例如基因组学,转录组学,代谢组学和基于植物 - 微生物基的基因基因工程,并在不断增强的气候抗性农作物的需求中得到了不断增强。
这项工作是根据创意共享归因于非商业4.0国际许可证的许可。摘要土壤是由许多生物和非生物因素形成和影响的。土壤形成的因素是气候,生物,浮雕,母体材料和时间。在本研究中相关文献的支持下,对土壤形成因素进行了审查。本综述提供了土壤形成因素的概述,相关研究结果可能对农业和林业领域的本科生和研究生很有用。气候,生物,救济,父材料和时间是土壤形成的普遍接受的因素。最近,“人类活动”因其作为土壤组成因素而被广泛讨论。土壤形成因素正在相互作用和随着时间的变化,因此可能需要采用系统方法来了解其动态和影响。关键字:气候,生物,浮雕,父材料,时间,土壤形成正确引用:Kafle,G。(2023)。的非生物和生物因素影响地球形成土壤的形成。农业与自然资源杂志,6(1),20-31。doi:https://doi.org/10.3126/janr.v6i1.71850简介
植物生长调节剂(PGR)对于通过激活其增殖和发育途径来调节植物如何应对植物至关重要。植物在开发周期中遇到的非生物压力源是由生长调节剂管理的。生长激素是控制植物的定期生长和对外部刺激的反应的化学信使。他们控制组织的发育和分化,从而控制植物的发展速度。PGR对于植物对非生物应激的反应是必需的。此外,植物中的激素使它们能够识别不利的环境环境。植物生物合成的能力使植物激素能够适应其环境。脱离的酸性辅助植物应对盐和干旱胁迫,而盐度,过度浇水,寒冷和干旱的乙烯艾滋病植物。植物可以借助茉莉酸从机械损伤和干旱胁迫中恢复。研究还提供了一些技巧,以最大程度地提高生长调节剂增强作物对非生物压力源的耐受性的能力。
非生物胁迫对农业构成严重威胁,因为它会对细胞稳态产生负面影响,并最终阻碍植物的生长和发育。由于气候变化,干旱和过热等非生物胁迫因素预计在未来会更频繁地出现,这将降低玉米、小麦和水稻等重要作物的产量,并可能危及人类的粮食安全。植物微生物组是一个与植物相连的多样化、分类学上组织的微生物群落。通过为植物提供营养和水分,并调节其生理和新陈代谢,植物微生物群经常帮助植物发育和耐受非生物胁迫,从而提高非生物胁迫下的作物产量。在本研究中,我们重点关注温度、盐和干旱胁迫,描述了非生物胁迫如何影响植物、微生物组、微生物-微生物相互作用和植物-微生物相互作用的最新发现,以及微生物如何影响植物的新陈代谢和生理。我们还探讨了在面临非生物胁迫的农业实践中应用植物微生物组必须采取的关键措施。
由于生物和非生物胁迫及其意外的组合,全球植物的发展和作物生产率大大降低。迄今为止,采用的各种化学物质(农药,肥料和植物调节剂)和基因工程技术来提高农作物对多种压力的耐受性,对环境产生了负面影响,并且耗时。这加快了努力,以寻找更环保的方法来控制植物压力。壳聚糖是一种生物聚合物,在很大程度上是从几丁质的脱乙酰基中提取的,并且似乎是克服这些问题以寻找更环保的解决方案的可行工具。由于其生物相容性,生态友好和经济性,成为农业中最受欢迎的生物聚合物之一。壳聚糖还通过信号转导途径激活防御机制,并转导过氧化氢和一氧化氮的二级分子以清除活性氧。在承受诸如干旱,盐和热量等非生物胁迫之前的壳聚糖已被证明可刺激植物的生长并增强抗氧化剂酶的产生,次生代谢产物和脱甲酸。在干旱中,它有助于积累OSMO - 细胞剂,以维持植物细胞的水潜力。另一方面,植物对壳聚糖的反应根据其结构,剂量,发育阶段和作物类型而变化。牢记这些事实的目的是为了更新有关壳聚糖的最新研究,其各种来源及其在不同作物中的有效浓度,针对生物性和非生物压力管理的作用机制,以改善农业的作物生产。
抽象药用植物含有许多生物活性二级代谢产物(SMS),可用于治疗和预防疾病。SM浓度是评估药用植物质量的关键标准。SM积累受多种因素的影响,包括遗传背景,气候,土壤物理和化学特性以及环境变化。近年来,越来越多的研究表明,根际和内生微生物在调节药用植物中SMS的积累中起着至关重要的作用。一些微生物与药用植物建立共生关系以促进植物的生长。其他微生物可以通过多种策略直接合成SMS或促进植物SM生物合成,例如激活植物免疫信号通路,并将植物激素分泌到宿主细胞中,以操纵激素介导的途径。相反,SMS可以提高植物对环境应力的抵抗力,从而影响根际和内生微生物的组成。在这篇综述中,我们总结了了解微生物在调节药用植物中SM积累中的作用方面的最新进展。进一步的研究应集中于利用微生物来增强药用植物中生物活性SMS的积累。
本章遵循 RED II 和 RFNBOs 授权法案中使用的术语,使用“竞价区”、“不平衡结算期”或“向下重新调度”等术语。这些术语的定义可在本文件的附件中找到。作为一项基本原则,在这些确切术语不存在或不适用的情况下(例如非欧盟国家的生产),应使用等效概念。这些等效术语应反映给定场景或国家/地区的电力系统的性质(例如,“竞价区”的等效术语应考虑相应的电力市场设计,例如节点设计而不是分区设计)。下文中提到原产地保证(以下简称 GoO)的地方也可以使用等效文件(例如英国的可再生能源原产地保证或美国、加拿大、澳大利亚和其他国家/地区的可再生能源证书)。有关购电协议和原产地担保的进一步指导,请参阅附件二;有关竞标区等值物和限电规则实施的进一步指导,请参阅附件三。
遗传和表观遗传调控生物标记在植物抗逆分子机制和作物育种方法中起着至关重要的作用。由于不利的生长条件阻碍了作物产量和全球粮食安全,养活不断增长的全球人口是一项艰巨的任务。为了很好地解开上述机制,科学家们不得不整合多个植物研究领域,因此,他们必须具备丰富的生物信息学知识和工具来管理大数据集。从本质上讲,本主题中包含的常规文章涉及农民和股东面临的现代问题。为了解决这些问题,科学家们采用了多方面的研究方法,涵盖植物生理学、分子生物学、遗传学、表观遗传学和组学等各个领域,以及最先进的植物科学和尖端方法,这些方法由复杂的技术和先进的方法提供支持,包括全基因组关联研究 (GWAS) 和表观遗传学方法,以揭示植物对高温、盐分、干旱和病原体侵袭等胁迫(生物和非生物)的耐受机制。因此,可以将进化的分子技术投入到未来的作物育种策略中,以提高生产力并产生更能抵御环境挑战和抵抗病原体侵袭的新品种。值得注意的是,Kumar 等人通过两种不同的方法揭示了遗传可塑性的分子基础对水稻种植中不同环境条件的关键重要性。本专题汇集了新发现和有用方法来促进植物科学研究。它阐明了表观遗传学变化(例如 DNA 甲基化、组蛋白(去)乙酰化和其他翻译后修饰 (PTM))在基因调控(抑制或诱导)中的作用,以及组学(基因组学、表观基因组学、转录组学、代谢组学、离子组学和蛋白质组学)在检测应激反应基因中的作用。使用