大型 LCD 显示屏,带蓝色背光,适合在黑暗区域使用 一键轮流显示 CO 2 /露点温度/湿球温度/空气温度/湿度。采用 NDIR(非色散红外)波导技术 CO 2 传感器设计 可编程警告 CO2 水平 CO 2 传感器长时间漂移补偿 声音警报(~80db)阈值设置 包括最大、最小、平均功能 每 2 秒迷你 USB 输出到 PC 进行分析 99 点手动记录 30000 点自动记录 回顾 99 点手动记录 保持功能冻结当前读数 外壳设计周围有导轨,有助于空气通风,从而快速准确地做出反应 易于在 380-420ppm 左右的新鲜空气中手动校准
本文介绍了一种在可见光谱中间接发射光谱法测定 CO 2 的系统和方法。该系统和方法通过使用微等离子体光谱仪实现,该光谱仪首先将 CO 2 转化为 CO,然后测量 560 nm 处的 CO Ångström 系统 (B 1 Σ + → A 1 Π) 的发射。实验是在混合了 N 2 和空气的 CO 2 气态样品上进行的,浓度在 0.01% 到 100% 之间。除了微等离子体光谱仪之外,还通过残余气体分析仪的质谱法监测该过程。发现 CO 2 到 CO 的转化效率非常高,在接近 100% 的选择性下达到最大值 41%。此外,CO Ångström 系统能够出色地测量 10% 以下的 CO 2 浓度,线性度为 R 2 > 0.99,预期检测限在千分之一范围内。结果中最有希望的方面是,分析是在极小的总样品量上进行的,其中流经系统的气体流量在 0.1 μ 摩尔/秒范围内。因此,本系统有望填补当前传感器技术的空白,其中廉价且易于使用的光学系统(例如非色散红外传感器)无法处理少量样品,而可以处理此类样品的质谱仪仍然昂贵、复杂且笨重。
电磁波是所有等离子体(实验室聚变等离子体或天体物理等离子体)的固有组成部分。研究电磁波特性的传统方法依赖于适合在当今经典计算机上实现的麦克斯韦方程的离散化。传统方法对于量子计算实现并不有效——量子计算是一种未来的计算资源,它提供了极快的速度和显著降低计算成本的诱人可能性。本文讨论了与在量子计算机上实现麦克斯韦方程相关的两个主题。第一个主题是制定麦克斯韦方程的量子薛定谔表示,用于在冷、非均匀和磁化等离子体中传播波。这种表示允许幺正、能量守恒、演化,并且很方便地适用于量子计算机的适当离散化。借助这些结果,第二个主题是开发一系列幺正算子,这些算子构成了量子比特格子算法 (QLA) 的基础。 QLA 适用于量子计算机,可在现有的经典计算机上实施和测试,以保证准确性以及计算时间随可用处理器数量的缩放。为了说明麦克斯韦方程的 QLA,我们给出了电磁波包在空间中局部非色散介电介质中传播和散射的时间演化全波模拟结果。
首字母缩略词和缩写 AI 人工智能 AMLD 高级移动泄漏检测 APEC 亚太经济合作组织 CARB 加州空气资源委员会 CEMS 连续排放监测系统 CH 4 甲烷 CO 一氧化碳 CO 2 二氧化碳 DOAS 差分光学吸收光谱仪 EPA 环境保护署(美国) FTIR 傅里叶变换红外光谱仪 GF-5 高分-5 GHG 温室气体 HFC 氢氟碳化物 HVAC 供暖、通风和空调 IOS 国际标准化组织 IoT 物联网 IPCC 政府间气候变化专门委员会 IRA 2022 年通胀削减法案(美国) LEO 低地球轨道 LDAR 泄漏检测和修复 LIDAR 光检测和测距 MoEF 环境和林业部(印度尼西亚) nd 无日期/未注明日期 N 2 O 一氧化二氮 NASA 美国国家航空航天局(美国) NDIR 非色散红外传感器 NIST 美国国家标准与技术研究所(美国) OCO 轨道碳观测站 PEMS 预测排放监测系统 PFC 全氟化碳 PPB 十亿分率 SF 6 六氟化硫 TCCON 总碳柱观测网络 THEOS 泰国地球观测系统 UAV 无人驾驶飞行器 UNFCCC 联合国气候变化框架公约 USAID 美国国际开发署
以及利用化学气相沉积(CVD)技术基于石墨烯材料的可改性传感器。8 对于基于聚合物的传感器的制造,Yan Jin 等人预测了两种技术。一种是拉伸工艺,另一种是挤压技术。9 Helwig,A.等人10 提出了基于光化学传感器技术和多通道非色散(NDIR)系统的健康监测方法,用于监测航空液压油。Mamun,MAA 和Yuce,MR 11 研究了一种基于纳米材料的可穿戴化学传感器。他们提出了基于化学转导原理的可穿戴化学环境传感器,并总结了它们的电、光化学和电化学行为。同样,Kim,Y.等人12 提出了一种基于二维材料(即石墨烯)的柔性化学传感器。他们利用晶圆级直接转化技术在聚合物基底上获得了石墨烯微图案。所提出的传感器表现出快速的响应时间。Alshoaibi, A. 和 Islam, S. 13 提出了一种热稳定的光化学传感器。该传感器基于 ZnO 掺杂的 SiO 2 - TiO 2 纳米复合材料。该传感器表现出快速的响应时间。此外,许多研究人员已经研究过光化学传感器并取得了良好的结果,如参考文献 14 - 16 所示。在这项研究中,我们研究了石墨烯薄膜并尝试将其用于制造光化学传感器。石墨烯薄膜借助射频磁控溅射技术沉积在干净的玻璃基板上,并分别暴露于丙酮、IPA 和甲苯中;我们根据其结构特性选择了暴露化学品,