摘要 - 本文介绍了ZK-iot框架,这是一种新颖的方法,可通过在区块链平台上使用零知识证明(ZKP)来增强物联网(IoT)生态系统的安全性。我们的框架可确保在潜在受到损害的IoT设备中固件执行和数据处理的完整性。通过利用ZKP的概念,我们建立了一个信任层,该信任层有助于在设备可能不会固有地相互信任的环境中的IoT设备之间安全的自主互动。该框架包括ZK-DEVICES,它利用功能承诺来生成执行程序的证据,以及用于编码设备之间交互逻辑的服务合同。它还分别利用区块链层和继电器作为ZKP存储和数据通信协议。我们的实验表明,在我们的系统设置中,证明生成,阅读和验证分别分别为694、5078和19毫秒。这些时间满足物联网设备通信的实际要求,证明了解决方案的可行性和效率。zk-iot框架代表着物联网安全领域的重大进步,为跨各种应用程序(例如智能城市基础架构,医疗保健系统和工业自动化)铺平了道路。索引条款 - 零知识证明,物联网,功能承诺,区块链。
感应充电或具有更高功率密度和较高功率评级的无线充电是具有巨大潜在技术开发潜力的区域,对于具有高功率和电压的商用车尤其有用。这是在几个实验室,大学和行业中研究的,作为导电充电技术的可行替代方法。尽管存在明确的优势,例如更高的自动驾驶适用性,缺乏接触接触的滥用和易于磨损的连接器等等,但还有一些相关的挑战,例如健康和安全性,电子磁性兼容性(EMC)以及转移效率,无线充电系统的功率密度,无线充电系统(WCS)以及一些其他挑战。在印度的上下文中查看,更好的周转时间,在某些应用程序中的关键参数,可以通过驾驶员不离开驾驶室而实现,并且系统较少依赖或不依赖驾驶员或充电器操作员/技术人员。
量子信息可以视为一个相当新的领域,它代表使用量子力学对信息处理任务的研究。我们可以将其视为经典信息理论与量子力学之间的综合,这是一种可行的方式,因为,经典信息理论使用一种语言,可以帮助您掌握量子力学中仍未解决的问题。此外,我们还可以看到,即使使用经典系统不可能,量子机械系统也可以执行经典信息处理任务。在量子信息理论的核心上,有量子相关性代表了量子信息处理任务的描述和绩效的必不可少的物理资源[1,2]。最著名和最使用的资源之一是纠缠,但是它并没有描述所有现有的量子相关性,因为存在可分离的混合状态,这些状态无法通过经典概率分布来模拟[3,4]。在这种思维方式中,Zurek [3,5]提出了一个量化两分系统中量子相关总量的定量,称为量子不一致,该量子可能具有可分离状态的非零值。在过去几年中,已深入研究了连续变量的开放系统中量子相关性的变色和动力学[6-15]。最近我们
本报告涉及基于ZnO纳米棒(NRS)的新型紫外线(UV)光电探测器(PD),使用化学浴物(CBD),ZnO纳米棒(NRS),涉及ZnO纳米棒(NRS),ZnO/ppc上的可蛋白质氧化聚丙烯(PPC)底物(PPC)底物(ZnO/PPC)。通过利用X射线衍射(XRD),Fiff-ELD发射扫描电子显微镜(FESEM),能量分散X射线光谱(EDX)和UV – VIS分心仪,研究了样品的结构,形态和光学特性。ZnO/PPC PD的光敏度值分别为52.48、47.46和42.53,分别为385 nm的波长,分别为5、10和15 V。当ZnO/PPC(PD)在5、10和15 V偏置电压下为375、385和405 nm的ON/OFF紫外线脉冲照明时,响应和恢复时间是良好的值。在385 nm的5 V和15 V下,电流增益和量子效率的最大值分别为1.52和550.7。2020 Elsevier B.V.保留所有权利。
