摘要 在计算机视觉和机器人领域,具身代理有望探索其环境并执行人类的指令。 这就需要能够根据第一人称观察充分理解 3D 场景,并将其语境化为语言进行交互。 然而,传统研究更多地侧重于从全局视角进行场景级输入和输出设置。 为了解决这一差距,我们引入了 EmbodiedScan,这是一个多模态、以自我为中心的 3D 感知数据集和整体 3D 场景理解的基准。 它包含超过 5k 个扫描,封装了 1M 个以自我为中心的 RGB-D 视图、1M 个语言提示、160k 个 3D 导向框,涵盖 760 多个类别,其中一些与 LVIS 部分一致,以及具有 80 个常见类别的密集语义占用率。 基于这个数据库,我们引入了一个名为 Embodied Perceptron 的基线框架。它能够处理任意数量的多模态输入,并表现出卓越的 3D 感知能力,无论是在我们建立的两个系列基准测试(即基本 3D 感知任务和基于语言的任务)中,还是在野外。
皮肤癌检测是临床决策支持的一个常见应用 [7]。由于皮肤癌患者数量的增加和早期检测的良好治疗效果,过去几年来,人们在该领域进行了大量研究。在此背景下,DNN 已成为开发皮肤图像分类模型的可行方法 [2、8、12、30]。社区的高度关注导致出现了各种不同方法,其性能水平也参差不齐。1 所有方法的共同点都是训练一个可用于诊断并从而用于临床决策支持的模型。因此,新方法的评估标准通常是它们是否能够使模型在各种皮肤病诊断任务中取得更好的性能结果 [21]。同时,其他 AI 研究领域也越来越多地考虑对模型预测的解释。相比之下,这些技术在皮肤图像分类中的应用几乎没有得到解决,尽管最近的一些研究已经认识到
未来电动飞机和混合动力飞机对电力的需求不断增加,机载系统的高功率电力转换研究工作一直在进行中。航空系统的安全关键性质使航空电力转换器的可靠性成为关键的设计考虑因素。本文研究了电力电子系统的可靠性,重点研究了关键子部件的寿命限制因素。为起动发电机驱动转换器建模了不同系统电压水平下的电压源功率转换器的可靠性。一个关键的观察结果是,Si IGBT 器件足以满足低压和中压系统(高达 540 V)的可靠性要求。在更高的系统电压(高于 540 V)下,使用 Si IGBT 进行设计需要多级拓扑。在恒定功率曲线驱动中,转换器直流链路中薄膜电容器的磨损故障对系统可靠性的影响最小。在没有增强电压降额的多级拓扑中,系统可靠性主要受宇宙射线引起的随机故障影响。仿真结果表明,在高系统电压 (810 V) 下,带有 SiC mosfet 的 2 L 拓扑在可靠性方面优于基于 Si IGBT 的 3 L 拓扑。
人工智能为汽车零部件制造商提供了改进制造工艺的新方法,并帮助他们满足客户严苛的质量要求。基于人工智能的系统可以优化缺陷检测和分类,防止生产线意外停机,更好地评估设备的剩余使用寿命,从而降低成本、缩短工期并提高客户满意度。
独立学习 对某一领域有特殊兴趣或专长的学生可以选择跟随教员在该领域进行独立学习。这些机会要求学生具有最大的主动性、独立性和责任感。独立学习可以作为主修课程或辅修课程;无论哪种情况,学生和教师都必须能够在八天的周期内上五节课。作为辅修课程的独立学习由相应的系主任和高中部主任批准。作为主修课程的独立学习由系主任委员会批准。这些申请必须在下一年秋季学期的春季提交,并在该学年的春季学期的秋季提交。除非学生已经用尽了该系提供的课程,否则任何独立学习都不能算作第五个主修课程。
本报告编写框架内的项目得到了以下 CERRE 成员组织的支持和/或投入:ARERA、EDF、Ei、Enel、Norsk Hydro、Ofgem、PPC、Terna、UREGNI。但是,他们对本报告的内容不承担任何责任。本 CERRE 报告中表达的观点仅代表作者个人观点,不代表他们所属的任何机构。此外,它们不一定与 CERRE、任何赞助商或 CERRE 成员的观点相对应。推荐引用:Pollitt, M.、von der Fehr, N.、Banet, C.、Le Coq, C.、Willems, B.、Bennato, AR 和 Navia, D.,《面向未来的电力市场设计建议》,欧洲监管中心 (CERRE),2022 年。
面向创新者和制造者的计算机科学课程教导学生,编程不仅限于虚拟世界,还涉及物理世界。学生需要创造性地使用传感器和执行器来开发与环境交互的系统。通过设计算法和使用计算思维实践,他们编写程序并将其上传到执行各种真实任务的微控制器。该单元通过有意义的应用拓宽学生对计算机科学概念的理解。团队选择并解决与可穿戴技术、交互式艺术或机械设备相关的个人相关问题。在整个单元中,学生通过融合硬件设计和软件开发来学习物理世界的编程,让学生通过创建个人相关、有形且可共享的项目来发现计算机科学概念和技能。
在这本开创性的本科教科书中,探索量子力学的基础,并探索这些原理如何推动新一代量子工程的发展。它使用尖端的电子、光电和光子设备解释物理和数学原理,将基础理论与实际应用联系起来;侧重于当前技术,避免历史方法,让学生快速掌握应对当代工程挑战的方法;介绍量子信息的基础,以及丰富的现实世界量子示例,包括量子阱红外光电探测器、太阳能电池、量子隐形传态、量子计算、带隙工程、量子级联激光器、低维材料和范德华异质结构;并包括教学功能,例如目标和章末家庭作业问题,以巩固学生的理解,并为教师提供解决方案。旨在激发未来量子设备和系统的发展,这是本科电子工程师和材料科学家学习量子力学的完美入门书。
结果,他们必须能够获得高效、优质和有效的服务。不幸的是,由于皮肤科医生短缺问题日益严重,北美大多数患者的情况并非如此,平均等待专业医生的时间超过两个月。因此,越来越多的医疗专业人员提供皮肤科服务,以满足这种快速增长的需求。识别皮肤病变的性质在很大程度上依赖于护理提供者的专业知识。然而,由于皮肤图像分析和分类的复杂性,这个过程通常对即使是最有经验的专家来说也很有挑战性,因此会产生大量不必要的活检标本。患者接受侵入性手术的经济负担和身体创伤,再加上皮肤癌病例的低假阳性率,使得有必要采用新一代工具来支持准确的、基于证据的临床决策。人工智能如何支持这一日益增长的需求?利用技术的力量代表着对色素性皮肤病变的分析和诊断有了巨大的进步。人工智能 (AI) 技术有能力彻底改变医疗专业人员为患者提供最佳医疗结果的方式。机器学习能力成为战略技术盟友,可根据对数百万先前分类的病例的累积分析提供高度准确的决策支持。旨在与该领域的主要利益相关者密切合作的全球举措更好地展示了 AI 在皮肤病学中的实施潜力。可以通过该领域不同研究领导者的累积参与来研究和促进 AI 算法的力量和特异性,就像 ISIC 图像分类挑战赛所鼓励的那样。
● 导航到工具 > 全局选项 > Copilot。 ● 勾选“启用 GitHub Copilot”。 ● 下载并安装 Copilot Agent 组件。 ● 单击“登录”按钮。 ● 在“GitHub Copilot:登录”对话框中,复制验证码。 ● GitHub Copilot:登录 ● 导航到或单击链接 https://github.com/login/device,粘贴验证码并单击“继续”。 ● GitHub 将请求 GitHub Copilot 必要的权限。要批准这些权限,请单击“授权 GitHub Copilot 插件”。 ● 权限获得批准后,您的 RStudio IDE 将显示当前登录的用户。 ● 关闭全局选项对话框,打开源文件(.R、.py、.qmd 等)并开始使用 Copilot 编码!
